

yPBL methodology: a problem-based learning
method applied to Software Engineering

Ernesto Exposito
CNRS ; LAAS ; 7 av. du Colonel Roche, F-31077 Toulouse, France

Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France
ernesto.exposito@insa-toulouse.fr

ABSTRACT
This paper proposes the yPBL learning methodology, based on
the well-known PBL method and adapted to software
engineering process by using the "y" methodology. The yPBL
methodology is defined as a mapping between the roles and
phases considered in PBL methodologies to the roles, iterations
and phases considered in the "y" methodology. Moreover, the
yPBL method includes different situations of active and passive
learning roles not only for the students involved in a course but
also for the instructors. Indeed, software engineering instructors
face the same challenge of any software engineer and needs to
continuously update their knowledge in software technologies.
The yPBL method has been designed using the Unified Modeling
Language (UML) and the various interactions points between the
various process actors as well as the information to be exchanged
during the synchronous and asynchronous learning process have
been specified using this language. Finally, interesting
preliminary results of the experience of using this methodology in
the INSA of Toulouse are included in this paper.

Keywords-software development process, problem based
learning, unified modeling language, software engineering process

I. INTRODUCTION
Software engineering is a complex process demanding from

development team members a high level of knowledge and
experience in diverse areas going from project management
skills to communication, design and implementation expertise.
Moreover, the large diversity of software design and
development approaches as well as the accelerated
development of new software technologies requires a
continuous learning process. This is not only the case for
software engineers but also for academic instructors teaching
software design and development courses.

Problem based learning (PBL) methods have been
successfully used in different domains and its benefits have
been largely demonstrated [1,2]. These methodologies ask for
the active participation of the students within the learning
process, playing not only the traditional passive learning role
but also an active role where part of the knowledge needs to be
discovered and applied by themselves. Moreover, the students
may be asked to transmit the knowledge they have acquired to
other students in order to reinforce the learning process as well
as to demonstrate that the learning objectives have been
achieved. Nevertheless, even if PBL methodologies have been
designed to be easily adapted to any educational domain, the
specificities of software engineering courses need to be

carefully studied in order to improve the benefits of these
learning methods while applying good practice approaches that
are specific to this domain. As previously introduced, software
engineering courses ask for multiple skills expertise acquisition
and development. Indeed, students need to efficiently exert in
the area of project planning, quality assurance, translation and
traceability of customer requirements, analysis of the software
context and constraints, mapping of functional and non-
functional requirements to technical requirements, design of
software solutions following good and well-known practices
(e.g. design patterns or object oriented approaches),
implementation of the designed solution, testing techniques,
integration procedures and finally deployment and maintenance
strategies of the software product and related documentation.
The previous list is not exhaustive and shows the degree of
complexity involved in designing PBL-based courses allowing
students to play the required roles in order to achieve the
software engineering learning objectives.

In the area of software engineering process, several
methodologies have been proposed in order to efficiently
support members of development teams to design and
implement software products. Unified Process (UP)
methodologies are very well known in the world of software
engineering for providing an efficient process based on an
incremental and iterative sequence of phases. Phases include
analysis and specification of requirements, design and
specification of the software solution and implementation, test,
integration and deployment of the software product. These
phases are planned and executed in incremental iterations
where in each increment new customer requirements can be
added within the process. Likewise, bugs detection and
corrections as well as requirements change requests can be
added in each iteration. As agreed in the software management
plan, stable or experimental software products can be released
at the end of the iterations.

UP methodologies have been specialized in the form of
extended methodologies (i.e. Rational Unified Process,
Enterprise Unified Process, Extreme Unified Process, Agile
Unified Process, etc.). In recent years an interesting
specialization known under the name of Two Tracks Unified
Process (2TUP) has been proposed to face the reality of
continuous changes of requirements and technologies that
represents an invariant reality in software engineering. This
methodology, also known as the "y" methodology due to its
graphical representation, proposes a differentiation of 2 tracks
for the Unified Process, the first (left) track represents the
functional aspects of the software product and the second

1817

(right) track the technical aspects (e.g. technology,
environment, platforms). This separation helps software
engineers to concentrate on discovering and specifying the
functional requirements that need to be satisfied (left track)
while allowing them to explore and select the technologies that
could be used to build the software solutions (right track). Once
the functional and technical requirements have been identified
and specified, both functional and technical tracks can be
merged in order to produce the software design specification.
From this point, the software product can be developed, tested,
integrated and deployed. This sequence of parallel and
serialized phases will be executed within the incremental and
iterative process proposed by the UP method. Benefits of this
interesting methodology have been demonstrated by its
application in many industrial and research software projects.

This paper proposes a new learning methodology, based on
the well-known PBL method and adapted to software
engineering processes. This methodology called yPBL is aimed
at being applied to develop software engineering courses
within the context of real software projects. yPBL is defined as
a mapping between the roles and phases considered in PBL
methods into the roles, iterations and phases considered in the
"y" process. The yPBL method defines a process where
incremental and iterative phases and communication channels
and deliverables are planned and defined to facilitate the
interaction between external and internal actors involved in the
real software project: �“the client�” and �“the project team�”.
Within the project team, students and instructors work together
playing different roles in order to build the software solution
required by the client. Guided by a real project, internal actors
of the process are naturally involved in situations of passive
and active learning. Indeed, similar to the students, software
engineering instructors face the same challenge of any software
engineer face to the accelerated software engineering
evolution. For this reason, both instructors and students need to
participate in a continuous learning process. The yPBL
methodology also defines an internal process where the
interactions between the internal actors are planned in
incremental iterative asynchronous basis. In order to perform
these interactions, internal actors need to work on learning
activities including bibliographic research, course preparation
and presentation and evaluation of peers based on real
knowledge acquisition. Further in the software building
process, internal actors need to apply their acquired knowledge
in constructing the software solution. At the end of each
planned iteration, interactions with the external actors (i.e.
clients) are carried out in order to present and evaluate the
product releases. During these interactions, the evaluation of
the software product is done based on the client�’s satisfaction
degree and the product qualities.

The yPBL method has been designed using the Unified
Modeling Language (UML) and the various interactions points
between the various process actors as well as the information to
be exchanged during the learning, software construction and
evaluation process have been specified using this language.
The yPBL methodology has been successfully applied in
several software engineering courses at the INSA of Toulouse.

The rest of this paper is organized as following. Section I
presents a state of the art related to software engineering

processes. Section II presents the yPBL methodology model.
Section III describes a concrete study case illustrating the use
of yPBL within a Software Oriented Architectures (SOA)
course. Finally, several conclusions and perspectives of this
work are presented.

II. STATE OF THE ART
In this chapter the state of the art aimed at providing the basis
for the yPBL methodology is introduced. First section is
aimed at presenting the main standards in software
engineering processes. Second section briefly describes the
2TUP process that is the one promoted by the yPBL
methodology. Finally, the main IEEE standards aimed at
guiding and documenting software engineering process will
also be presented.

A. Software engineering process
A software process defines the steps required to create a

software product. One of the most mature and well-known
software engineering processes is the Unified Software
Development Process or USDP [3]. USDP was introduced as a
standard process for creating software products based on the
use of the Unified Modeling Language (UML).

USDP Introduces the concept of 4Ps: people, project,
product and process. People working in a software
development project collaborate within an adequate workflow
based on the unified process using the common UML notation
in order to build and represent the blueprint of the software
product. The process includes all the activities needed to
transform user's requirements into a software system. These
activities include project management, requirements
specification, analysis, design, development and testing.

USDP follows a component-based approach. This means
that the software system being developed is based on software
components interconnected via well-defined interfaces.
Likewise, object oriented design and development approaches
are followed within USDP.

There are three major characteristics differentiating USDP
from other approaches:

• Use-case driven: the process is driven by the use cases
or functionalities offered for each external actor (i.e.
clients or any external entity interacting with the
system). It means that the process does not consider
functionalities that �“might be good to have", but it is
driven by the realistic usages of the system. In other
words, use cases drive all the process phases:
requirements, design, implementation and test.

• Architecture centric: during the process the software
architecture is constantly refined including static and
dynamic aspects of the system. It means that the form
of the system is built progressively.

• Iterative and incremental process: the transformation
of user's requirements into the software product is
performed within an iterative and incremental process.
During this process, the functions and the form of the
system are represented by the use cases and the
architecture respectively.

1818

Various adaptations to the Unified Process (UP) have
been proposed in the last years. These adaptations are based
on the category of software system being developed, the
organization involved, competence levels of development
teams or the project size. Examples of these specializations are
Rational Unified Process (RUP), Enterprise Unified Process
(EUP), eXtreme Unified Process (XUP) or Agile Unified
Process (AUP). However, most of the processes used today for
designing and developing software systems are commonly
based in the principles proposed by the USDP process. This is
the case for the 2TUP process described in the next section.

B. The �“y�” or 2TUP process
As previously introduced, the Two Tracks Unified

Process (2TUP) has been proposed to face the reality of the
constant change of requirements and technologies of current
software systems [4]. The "y" methodology proposes an
iterative and incremental process composed by 2 parallels
tracks aimed at capturing functional and technical
requirements, followed by one centralized design track.

This tracks-oriented structure helps software engineers to
concentrate on discovering and specifying the functional
requirements that need to be satisfied (left track) while
allowing them to explore and select the technologies that
could be used to build the software solutions (right track).
Once the functional and technical requirements have been
identified and specified, both functional and technical tracks
can be merged in order to produce the software design
specification. From this point, the software product can be
developed, tested, integrated and deployed. Further details of
the �“y�” methodology will be presented in the next.

C. Software engineering standards
Several standards have been proposed in order to guide

and document software engineering process. The most widely
used in industry are the standards proposed by the IEEE:

• Software Project Management Plan (SPMP): specifies
the structure of software project management plans
that are applicable to any type or size of software
project [5].

• Software Requirements Specification (SRS): specifies
the structure and necessary qualities of software
requirements specification documents [6].

• Software Design Description (SDD): proposes the
necessary information content and recommendations
for software design descriptions [7].

• Software Quality Assurance Plan (SQAP): specifies
the format and content of software quality assurance
plans [8].

• Software Configuration Management Plan (SCMP):
describe the structure and content for a software
configuration management applying to the entire life
cycle of the software [9].

• Software Test Documentation (STD): this document
defines the form of a set of documents for use in
defined stages of software testing [10].

• Software Validation & Verification Plan (SVVP):
specifies the structure of the validation and verification
plan including analysis, evaluation, review, inspection,
assessment, and testing of software products and
processes [11].

These standards help to express and communicate in an
unified way all the information related to the software process.

 In the case of software engineering learning
methodologies, the introduced software processes and related
document standards, provide the basis to define a learning
model where the learning objectives can be efficiently
achieved while designing and developing a real software
project. Next chapter introduces this software engineering
learning model.

III. YPBL MODEL
The yPBL is a learning methodology, based on the PBL

model and inspired in software engineering processes. As
previously introduced, yPBL is aimed at being deployed in the
context of software engineering courses based on the
construction of a real software system. The yPBL model is
defined as a mapping between the roles and phases considered
in PBL methods into the roles, iterations and phases
considered in the "y" process. As an intent to formally
describe the yPBL methodology, the UML language has been
used to build an yPBL model.

1) yPBL use cases
In order to follow the good practices for software

engineering introduced in the previous chapter, the unified
process has been used to model the yPBL methodology itself.
As any unified process, the yPBL methodology is use-case
driven as illustrated in Figure 1.

Figure 1. yPBL methodology use cases diagram

1819

In this diagram the various actors interacting in order to
achieve the learning objectives while constructing a software
system are depicted: students, instructors and the external
client.

Guided by the construction of the software project, two
generalizations of actor roles are proposed in yPBL:
coordinators and learners. The coordinator role is involved in
the learning project management and the learner in the
learning activities.

Specializations of the coordinator role are represented by
instructor coordinator and student coordinator roles. These
actors play a supporting role for activities such as planning,
scheduling, hardware and software resources allocation. They
monitor and control the project in order to early detect
potential problems and work together to find efficient
solutions. Specifically, the instructor coordinator actor is the
one interacting with the external client in order to study and
validate the project to be used to instantiate the methodology.

Generalizations of the learner role are defined by passive
and active learners roles. Students and instructors play these
learner roles. Actually, they are internal actors of the real
process and as a consequence they are naturally involved in
situations of passive and active learning face to the
requirements for learning and applying software engineering
technologies. Active and passive learning roles facilitate both
instructors and students participating in the continuous
learning process.

2) yPBL high level process
The yPBL method follows also the incremental and

iterative process proposed by the Unified Process as illustrated
in the activity diagram presented in Figure 2.

Figure 2. Process proposed by the yPBL

At the high-level yPBL process, an initial start up activity
needs to be performed in order to prepare and validate the
overall software-learning project. Once the start up activity is
achieved, two parallel processes represented by the y and the
PBL process are performed. The y process itself concentrates

in software engineering activities. The PBL process targets the
learning activities. During the overall yPBL process, specific
adaptations to the standards presented in the previous section
and proposed to guide a software project will be used to drive
both y and PBL processes. The first standard is the Project
Management Plan (PMP). This document is an adaptation of
[5], [8] and [9] documents, and it is intended to control and
manage the yPBL process. As illustrated in Figure 2, the PMP
document is used for each iteration in order to control the
project progress according the initial plan as well as to manage
people, resources and deliverables involved in each phase for
both software and learning project processes. Once the final
iteration has been achieved, a final evaluation of the yPBL
project will be performed. During this evaluation both learners
participants as well as the learning process itself are evaluated.
Results of these evaluations are reported in the �“Course
Evaluation�” deliverable.

3) yPBL detailed level process
The various activities illustrated in the yPBL process

presented in the previous section will be further detailed in
this section. Specifications used to model internal yPBL
activities are intended to describe the workflow process. In
these specifications sequence of activates, interaction between
the various process actors, as well as communication channels
are specified.

Figure 3 illustrates the start up activity. This initial activity

is performed as an interaction between the client and the
instructor-coordinator.

Figure 3. Starting up process

The start up activity starts when the instructor-coordinator
defines the course objectives from the functional and technical
point of view. Functional objectives are defined as abstract
learning statements aimed at expressing the basic and
fundamental knowledge goals to be acquired by the learners.
Technological learning objectives are intended to express

1820

concrete statements based on current software technologies to
be used by the learners in order to apply the basic knowledge
goals defined by the functional objectives. The document
called �“Course Objectives�” is used to collect these functional
and technical objective specifications. This document is
communicated to potential clients in order to allow them to
propose an objective-compliant project. Clients are asked to
propose an informal specification of the project in the form of
a �“Project Proposal�” that will be validated or rejected by the
instructor-coordinator. If the project is accepted it will be
submitted to the rest of the yPBL process actors.

From this point and as illustrated by the high level yPBL
process in Figure 2, two parallel processes guiding the
software and learning project activities are started. Figure 4
illustrates the activity diagram modeling the software project
process. Students and instructors perform collaborative or
individual activities for every iteration of the y process. In
order to stimulate autonomy skills, students are asked to work
on the functional and technical analysis phase of the project
based on the �“Project Proposal�” submitted by the client.
During this phase, students need to interact with the client in
order to clearly specify and validate the software requirements
and produce the SRS document [6]. Likewise, students are
asked to work on the PMP document in order to define the
plan to be executed within the several process iterations.
Furthermore, they are also asked to pay special attention in
defining a realistic project plan based on the priorities of the
requirements expressed by the client.

Figure 4. 2TUP or y process

During the design, development and testing activities, both

students and instructors work together in order to produce the
artifacts expected to be released in every iteration. In these
activities the role of the instructor is clearly separated from the

client role and this is one important benefit offered by the
yPBL method. Indeed, the instructor plays a supporting role
intended to help the students to achieve the software project
objectives. During these activities, design and test oriented
documents are produced following the SDD [7] and STD
standards [10]. Following the PMP plan and before the end of
the iteration, specific interactions need to be performed with
the client in order to validate the �“Product�” release against the
software requirements expressed in the SRS.

In parallel to the y process, learning activities guided by the
�“Course Objectives�” are being carried out for every iteration.
Figure 5 depicts the activities performed by the coordinators,
instructors and learners during the PBL process.

Figure 5. PBL process

Actors performing the role of coordinator (i.e. instructor-
coordinators or student-coordinators) perform project
coordination activities for every iteration. They work on the
PMP document in order to facilitate the project progress and
anticipate actions aimed at minimizing potential risks.
Coordinators work together on the basis of periodic meetings
or by email communication. During these interactions,
coordinators exchange monitoring information collected
during the process. This information can be used to encourage
positive experiences and good practices as well as to work
together in solutions to solve detected anomalies.

Likewise, instructors and learners work together in learning
activities, which are naturally deduced from the plan, defined
in the PMP. Indeed, as the project has been validated based on
the learning objectives, the learning activities to be carried out
in order to construct the software project can be directly
deduced from the PMP. This is particularly important to
guarantee the rationalization of the learning objectives and this
is another important benefit offered by the yPBL
methodology. Students and instructors work together to define
and plan learning activities to be carried out in every iteration
of the process. In order to efficiently carry out these learning
activities accordingly with the plan, both actors need to

1821

participate in the research and preparation of the learning
material. Instructors work together on the definition of a list of
learning subjects. These subjects will be prepared and
presented by both students and instructors. In order to
facilitate the preparation of the learning material,
bibliographic �“Research Resources�” need to be identified and
proposed by both actors. In order to guarantee that the learning
material to be produced is compliant with the plan, resources
and project requirements, an approach based on the
elaboration of �“Cookbooks�” can be followed. �“Cookbooks�”
are aimed at proposing an efficient presentation of definitions
and concepts (i.e. the ingredients), and how they can be
applied to construct a particular software function or service
(i.e. the recipes). Recommended resources and links are also
proposed in the cookbook. Instructors and students carry out
the preparation of the cookbooks and specific timeslots are
reserved to allow them to present these learning materials. The
cookbooks are also stored in a common repository in order to
facilitate its access during the project process.

This is another benefit offered by the yPBL methodology.
Indeed, internal actors play the roles of active and passive
learners, working individually or within groups in learning
activities including bibliographic research, course preparation
and presentation. Moreover, the evaluation of these activities
is carried out by the peers based on the real knowledge
acquisition. Furthermore, during the software building
process, internal actors need to apply their acquired
knowledge in constructing the real software solution.

Finally, for every PBL iteration the evaluations is carried
out based on the SRS, SDD and STD documents. From these
documents the achievements can be objectively measured
based on the requirements identification, solution design and
implementation, and the test performed on the final product.
Results of the evaluation in every iteration are stored in the
�“Course Evaluation�” document.

The last activity considered in the yPBL process is the final
evaluation. This final evaluation activity is carried out after
the last process iteration. During this activity, all the process
actors are asked to participate in a final project presentation
including the final version of the project documents as well as
the delivery of the final release of the project. During this
activity, the functional and technical project requirements are
finally measured, as well as the global satisfaction of the
internal and external actors. The process itself is discussed and
a list of suggestions and remarks are compiled and included in
the �“Course Evaluation�” document. This information is very
helpful to improve the process for future projects and also to
measure and compare the final results.

IV. STUDY CASE
The yPBL methodology has been designed based on the

experimental results obtained by applying PBL methodologies
for software engineering projects in the INSA at Toulouse in
France. During the last 2 years, the yPBL methodology has
been experimentally used with students of 4th and 5th year of
software engineering. These courses can be classified in two
categories: introductory design and development courses and

advanced technology oriented courses. For both categories of
courses, the yPBL has been successfully followed.

In order to propose a friendly interface following the
methodology, a template course has been defined using the
Moodle learning management system [12]. This template is
illustrated in the Figure 6.

Figure 6. yBPL template for moodle interface

This template is used in order to facilitate the interaction
between the various actors of the process. The interface
illustrates the �“y�” software project methodology with the
functional and technical tracks including the requirements and
analysis phases as well as the merging central track aimed at
designing, implementing, testing and deployments phases. For
every track and iteration, explicit indications of document
deliverables links are included (PMP, SRS, SDD and STD).
Likewise, links to the documents produced during the learning
process in the form of cookbooks are also included in the
interface. This interface is configured during the start up
process, and the �“Course Objectives�” and �“Project Proposal�”
documents are also included. The interface is adapted to the
various project and learning process actors in order to
facilitate their collaboration during the whole process.
 In order to illustrate a real instantiation of the methodology, a
concrete study case based on a Software Oriented
Architectures (SOA) systems course will be presented. Details
of this study case are presented in the Table 1.

Actor Description
Client Direction of the DGEI-INSA department
Instructors 4 Software engineering instructors

6 Software oriented architectures instructors
3 English instructors

Students 60 students of the 5th year of IT and Networking
engineering

Coordinators 1 instructor and 5 students
Learners (A/P) 5 instructors and 60 students

Table 1. Actors participating in the SOA course

1822

The client proposing the project is represented by the GEI
department of the INSA. The project proposed by the client
asks for a system able to automate financial accounting
activities. In the process a number important of users, interface
and data needs to be considered to build the system.

The instructors participating in this course are divided in 3
groups: software engineering, SOA and English instructors.
The first group of instructors targets the software engineering
process and the second group targets the software technologies
to be used to design and develop the software solution.
English teachers participate actively in the project, working
with the students in the elaboration of the documents in
English versions. Moreover, English teachers supervise and
guide the students in activities aimed at writing and presenting
the various cookbooks developed during the learning activities
and related to the project software requirements. The students
participating in the project are divided in two categories: IT
and Networking engineering students. Students work in
groups of 12 students and each group can work in a different
sub-system of the global project. The group of coordinators is
composed of 1 instructor and 5 students, one student-
coordinator for each groupe of 12 students. Finally, the
learners groups are composed of all the students and 5
instructors mainly working in the area of software
technologies.

The objective and subjective measurement results obtained

from the application of the yPBL methodologies have been
highly motivating. Indeed, instructors and students consider as
very positive the gained experience from working in a real
software project. Moreover, instructors remark the high
motivation of the students, particularly when they perform
learning and teaching activities. Furthermore, even if at the
end of the project the full set of clients requirements have not
been satisfied, students are able to explain the reasons for this
partial result. They claim to have understood that living the
process is the best way to know how to do things working and
how to avoid in the future making the same mistakes.

CONCLUSIONS AND PERSPECTIVES
This paper has presented an innovating learning

methodology, based on the well-known PBL method and
inspired and adapted to software engineering unified
processes. The yPBL model describing the use cases driving
the methodology as well as the various internal activities
guiding the process has been presented. This model has
specified the relationship between the roles and phases
considered in PBL methods and the roles, iterations and
phases considered in the Two Tracks Unified Process (2TUP)
or "y" methodology. The yPBL methodology has been defined
as a process where incremental and iterative phases are
performed and specific communication channels are
established by the way of standard documents in the
framework of a real software project. A case study illustrating
how this methodology has been instantiated at the INSA of
Toulouse has also been presented. Motivating results have
been obtained during the experimental application of the
yPBL. At the moment of writing this paper, a new
instantiation of the methodology has been started and a more
important set of measurements will be performed in order to
better analyze and evaluate the benefits offered by yPBL.

ACKNOWLEDGMENT
The yPBL methodology has been successfully designed,
implemented and experimented thanks to the valuable and
active participation and collaboration of the GEI and CSH
departments at the INSA of Toulouse, including direction,
administration staffs as well as the teachers and the students
participating in this project.

REFERENCES
[1] Savery, John R. (2006) "Overview of Problem-based Learning:

Denitions and Distinctions," Interdisciplinary Journal of Problem-
based Learning : Vol. 1: Iss. 1, Article 3.

[2] John Biggs (2003). Teaching for Quality Learning at University
Buckingham: The Society for Research into Higher Education and Open
University Press, ISBN 0-335-21168-2

[3] Jacobson, I.; Booch, G.; Rumbaugh, J. The Unified Software
Development Process (Addison-Wesley Object Technology Series);
Addison-Wesley Professional: 1999.

[4] Pascal Roques et Franck Vallée, « UML en action », Editorial Eyrolles,
february 2000, ISBN-10: 2212091273

[5] PMP: Software Project Management Plan (PMP) IEEE 1058
[6] SRS: Software Requirements Specification IEEE 830
[7] SDD: Software Design Description IEEE 1016
[8] SQAP: Software Quality Assurance Plan IEEE 730
[9] SCMP: Software Configuration Management Plan IEEE 828
[10] STD: Software Test Documentation IEEE 829
[11] SVVP: Software Validation & Verification Plan IEEE 1012
[12] Moodle Learning Management System, http://moodle.org/

1823

