

Integration View of Web Labs and Learning
Management Systems

Elio Sancristobal, Manuel Castro
Electrical and Computer Engineering Department

UNED - Spanish University for Distance Education
Madrid, Spain

elio@ieec.uned.es, mcastro@ieec.uned.es

Judson Harward, Philip Baley, Kimberly DeLong,
James Hardison

Center for Educational Computing Initiatives
MIT, Cambridge, Massachusetts, USA

jud@mit.edu, pbailey@mit.edu, kirky@mit.edu,
hardison@mit.edu

Abstract—The integration of Learning Management Systems and

specific learning support applications known as Web Labs (remote

and virtual laboratories) are the target of a new wave of service-

oriented applications devoted to improving on-line learning

experiences.

Nowadays these solution works in a separet way therefore the

students teachers, administration must log in different systems, the

are not reusing services, etc.

For these an other reasion in this paper we are focus in two topics.

In one hand we describe a technique to present a web lab through a

browser delivered by an LMS as a part of SCORM standard

packaging. In other hand we describe a service-oriented

architecture which allow integrating multiple LMSs (Moodle,

.LRN, Claroline, etc.) with iLabs and multiples web an remote labs

to supply the full functionality needed by educators

Keywords- e-learning; Learning management system; remote

Labs, virtual labs, iLabarchitecture, e-learning standards; Web

services.

I. INTRODUCTION
This paper discusses the need for merging several e-

learning solutions into one. At present there are a great number
of universities that are using blended learning or distance
learning in parallel with traditional learning. In the case of
distance learning, it is necessary to change and apply distance
learning methods so that students achieve both theoretical and
practical knowledge. To achieve this double goal, there are two
new solutions particularly designed for distance learning [1]:

 A learning management system (LMS) is a software
program that enables the display of theoretical content
in an organized and controlled way. LMSs offer a set
of features and services: user administration, e-learning
standards (SCORM, IMS-QTI), content packing, etc.

 A web lab is a program that allows students to execute
experiments remotely using a PC and an Internet
connection. There are several ways to implement a
web lab:

o Software Lab. They are simulation programs
and are executed locally on the student’s
computer. There is no collaborative work, and
students do not work with real instruments or
hardware.

o Virtual Web Lab. These are simulation
programs that use web resources. They permit
students to collaborate during the execution of
experiments.

o Remote Lab. A remote lab allows the student
to manipulate real instruments over the
Internet during the run of an experiment.

Many universities are developing their own virtual and
remote labs, but these efforts lack a unity of design, involve
much custom development and present integration issues.
There is little to no reuse of software between these efforts;
each is developed from scratch. As one solution for this
problem, the Massachusetts Institute of Technology has
implemented the iLab Shared Architecture (ISA) [2-3] to
facilitate the rapid development of new web labs and to provide
a mechanism so that students from one university can use
experiments and hardware instruments published from another.

While the ISA solves many problems, it does not offer the
standard features supplied by learning management systems
(e.g., chat, forums, learning modules). If you want these
features in a current iLabs, you must program them into each
lab’s software. In this article we define a common architecture
and middleware for adopting these typical LMS services as e-
learning standards. We also illustrate the merger of theoretical
and practical learning in a particular solution.

Thus, in this paper we will focus on two topics:

 We describe a technique to present a web lab through a
browser delivered by an LMS as a part of SCORM
standard packaging. The LMS will provide the web
lab’s communication, administration, and
authentication tools. Of course, the lab can invoke the
SCORM API so that the teacher can monitor the
student’s progress. When implemented as SCORM
standard packages, web labs can be deployed in
different LMSs such as Moodle, .LRN, Claroline,
Sakai, etc.

 While the ISA provides an excellent management
infrastructure for online labs, we argue that we need a
service-oriented fusion of this architecture with general
LMS services, compatible with multiple LMSs
(Moodle, .LRN, Claroline, etc.) to supply the full
functionality needed by educators.

1409

mailto:elio@ieec.uned.es
mailto:mcastro@ieec.uned.es
mailto:jud@mit.edu
mailto:pbailey@mit.edu
mailto:kirky@mit.edu
mailto:hardison@mit.edu

II. LEARNING MANAGEMENT SYSTEMS (LMS)
A LMS is a software program that allows displaying

theoretical content in an organized and controlled way. To do
this, the most of LMS are designed using a common
architecture, Fig. 1. that allows adding, deleting or modifying
new functionalities.

The main elements in this architecture are:

Figure 1. Architecture of a LMS.

 Database. This stores the information that the
services are going to need and the information that
will be displayed to user (administrators, teachers,
students, etc.). Depend on the LMS that you are
going to install and use, you will be able to work
with mysql, oracle, postgres, etc.

 Modules, blocks, packages, etc. The structure of
this modules or packages depends on the LMS. So
how the programming language that you should
use. For instance, if you are working in Moodle
[4] you must use PHP to program. To sum up,
these modules contain the logical of LMS services

It is very important to mention that there are open
source LMS as Moodle, DotLRN [5], Sakai [6],
Claroline [7], etc. So that, a programmer could add
new modules or modify standard services that are
include in the standard installation of LMS.

 Web Server. All the LMS are installed along with
a web server. This allows responding the user
requests though Internet. Also, at the same that the
others elements mentioned above, depending on
the LMS with you are working, you have to install
TOMCAT, APACHE, etc.

Once, we have known how a basic LMS architecture is. We
are going to enumerate several of most important features and
services that a LMS offers:

 Administration. It must be able to manage user
registrations, roles, assign tutors, user payments, etc

 Content packing. It organizes the content in a
hierarchical structure and sets up a mechanism to
swap content between different learning
management systems. To do it, it’s usually used the
specification IMS content packaging or the

specification SCORM (Shareable Courseware
Object Reference Model).

 Synchronous and asynchronous Communication
Tools. It must allow collaborative work. So that
they can share information, opinions and
experiences.

 Knowledge evaluation. The tutors and teachers
must be able to evaluate the student’s progress.
Also the students can do test where they can see
their progress. To do it, it’s possible to use the
specification IMS QTI (Question and Test
Interoperability).

 Tracking user. This feature should provide
information user with teacher about that difficulties
and problems have been found in the course by the
students for the course term.

So, we have a tool that offers a set of features and services
to display theoretical content in an organized and controlled
way. As well as using e-learning standards like SCORM, IMS-
QTI, etc.

III. SOFTWARE, WEB, REMOTE LAB AND ILAB
In many distance learning o blended learning courses,

besides displaying theoretical knowledge by LMSs, is needed
that the students acquire skills and practical knowledge. This
and other reasons (the students are be able to carry out their
experiment 24 hour by day and 365 day in a year, etc.) have
given risen to design and create software, web and remote labs
[8].

In this section we are going a brief description each one of
these labs and one solution called iLab that was developed by
the Massachusetts Institute of Technology to facilitate the rapid
development of new web labs and to provide a mechanism so
that students from one university can use experiments and
hardware instruments published from another.

 Software Labs

They are based on software programs that are
being executed in the student’s computer, Fig. 2.

The student’s computer must have the hardware
and software requirements and an Internet
connection it is not required.

Student

1. Install software lab in PC’s student

2. To carry out the experiments

Figure 2. Software Lab.

Some of the main problems of theses labs are:

o Lack of collaborative tools

o Version problems, students have a lot of
version of same labs. To solve it, the
software labs allow the students to update
the software using an Internet
connection, Fig. 3.

1410

Figure 3. Software Lab with Internet Connection.

 Web Lab. These are simulation programs that use
web resources. They permit students to collaborate
during the execution of experiments, Fig. 4.

The main problem is that students don´t
manipulate real instruments to carry out his
experiments.

Student

Student

Internet

Web

Server

1. Web browser

2. Applet Java or web lab application

1. Web servicies

 a) Registration

 b) Communication tools, etc.

2. Virtual labs

Figure 4. Web Lab.

 Remote Lab. These are simulation programs that
use web resources. They permit students to
collaborate during the execution of experiments,
Fig 5.

Audio

and video Server

Databse

Server

?
?

Instruments

Student

Student

Internet

Web

Server

1. Web browser

2. Applet Java or web application
1. Web servicies

 a) Registration

 b) Communication tools, etc.

2. Software labs

1. To storage:

 a) user´s data

 b) Experiments’ data, etc.

Controller

The controller is going to send

commands to instruments and

receive the results of the

executed commands.

Figure 5. Web Lab.

Once we have described briefly what are software, web and
remote labs. We are going to talk about the main problem that
appeared. Many universities and organizations started
developing their own virtual and remote labs, but these efforts
lack a unity of design, involve much custom development and
present integration issues. There is little to no reuse of software
between these efforts; each is developed from scratch. For this
reason, the Massachusetts Institute of Technology implemented
iLab Shared Architecture (ISA) to facilitate the rapid
development of new web labs and to provide a mechanism so
that students from one university can use experiments and
hardware instruments published from another.

To do this MIT divide the experiments according to the
type interaction between user and lab. As a result of this, MIT
has designed two architectures:

 Architecture based on batched experiments, Fig. 6.

Figure 6. Topology of a batched experiment based on the iLab shared.

 Architecture based on interactive experiments
where user and labs must establish a direct
communication, Fig. 7.

Figure 7. Topology of a interactive experiment based on the iLab shared.

So, ISA supports batch and interactive experiments. But, as
well as, ISA allows being installed in every university or
organization and therefore a student of one university could log
in the system and using the web and remote labs from other
universities.

While the ISA solves many problems, it does not offer the
standard features supplied by learning management systems
(e.g., chat, forums, learning modules). If you want these
features in a current iLabs, you must program them into each
lab’s software.

So, imaging two universities, both of them want to create
the same electronic remote laboratory and as well as theses
universities want the laboratory provide one set of features, as:
authentication, forums, chat, etc. To do this both of these
universities must facing with the following challenges and
disadvantages:

 Everyone should:

o Defining and design one architecture.
And probably the chosen architecture
will be different.

1411

o Programming and implementing the lab.
Depend on the chosen architecture will
be used different programming
languages.

This provoked that the user from different
universities needed different ways to log in and
work with the system and therefore it is
impossible to share labs. Due to this, appears
ISA.

 Also, everyone should create the services that the
laboratory needs as: forums, chats, storage area,
etc. This is a problem, because by every lab we
have to create, we must programme the same
services one and other time. And therefore , the
universities are wasting their time, personal and
efforts in doing the same thing all the time, Fig 8.

To solve this and other problems as the
integrating between both solutions (LMS and
web, remote labs) we are defining and developing
a common architecture and middleware for that
the labs could use the LMS services and e-
learning standards, Fig 9. And therefore, reuse
services.

Figure 8. Duplicating services.

In the next sections also illustrate the merger of theoretical
and practical learning in a particular solution. Thus, in this
paper we will focus on two topics:

 We describe a technique to present a web lab through a
browser delivered by an LMS as a part of SCORM
standard packaging. The LMS will provide the web
lab’s communication, administration, and
authentication tools. Of course, the lab can invoke the
SCORM API so that the teacher can monitor the
student’s progress. When implemented as SCORM
standard packages, web labs can be deployed in

different LMSs such as Moodle, .LRN, Claroline,
Sakai, etc.

 While the ISA provides an excellent management
infrastructure for online labs, we argue that we need a
service-oriented fusion of this architecture with general
LMS services, compatible with multiple LMSs
(Moodle, .LRN, Claroline, etc.) to supply the full
functionality needed by educators.

Figure 9. Reusing services.

IV. SCORM AND LMS
A Great number of Learning Management Systems support

several e-learning standards as: IMS_QTI, IMS-LD, SCORM,
etc. Every one of these has a different utility, for instance IMS-
QTI is a specification for a metalanguage which enables the
modeling of learning processes. In this section we are going to
focus on e-learning standard called Sharable Content Object
Reference Model (SCORM) [9-10].

SCORM content packaging provides a consistent form for
describing content structures, learning content, the metadata
that describes the various components of the content structures
and sequencing and navigation rules.

This facilitates searching and discovering content packages
and their resources.

How it is mentioned above SCORM documentation version
2004 describes a set of features of a content package as:

 Content Packaging: describes the SCORM
components used to build a learning experience
from learning resources. So, a package SCORM is
composed of assets, sharable content objects
(SCOs), activities, a content organization and
content aggregations, Fig. 10.

1412

Figure 10. Content aggregation.

o Assets are an electronic representation of
media, such as text, images, sound,
assessment objects or any other piece of
data that can be rendered by a Web client
and presented to a learner.

o A SCO is a collection of one or more
assets. The only difference between a
SCO and an asset is that the SCO
communicates with an LMS using the
Institute for Electrical and Electronics
Engineers (IEEE) ECMAScript.

o A learning activity may provide a
learning resource (SCO or asset) to the
learner or it may be composed of several
sub-activities.

o A content organization is a representation
or map that defines the intended use of
the content through structured units of
instruction (activities).

o Content aggregation can be used to
describe the action or process of
composing a set of functionally related
content objects so that the set can be
applied in a learning experience.

These packages are saved in a zip file. This file
contains among other files, a description of
package in XML, named imsmanifest.xml and the
physical file of resources called

 The SCORM Run-Time Environment, Fig. 11. In
this “book” is described:

o Content launch process. LMS must load
the SCORM when the user perform a
request.

o Standardized communication between
content and LMSs. To do this, it uses an
API

o Standardized data model elements used
for passing information relevant to the
learner’s experience with the content.

Figure 11. Scorm Run-time eviroment.

 Sequencing and Navigation: Descriptions and
requirements for defining sequencing and
navigation information.

Nowadays there are several versions of SCORM
v1.1, 1.2, 2004 and not all this version supports
sequencing and navigation.

So, if a teacher or e-learning designer creates a SCORM
package using these specifications then he could install it in all
the LMS that support that SCORM version, reusing content
and services.

V. PACKING WEB LAB IN SCORM
In the previous section we have read how a SCORM is

composed and how we can communicate this SCORM with the
LMS using an API. Now we are going to explain how we could
use a web lab into a SCORM and therefore how we could
reusing the LMS services and install this package in different
LMS that are SCORM compliant.

Nowadays you don´t need program to create a SCORM
package, only if you want to use the API for communicating
LMS and SCORM. In this case you have to include in SCOs
one o several javascript file, for instance:

 APIWrapper.js whose purpose is in wrapping the
calls to the API is to provide a consistent means of
finding the LMS API implementation within the
window hierarchy and to validate that the data
being exchanged via the API conforms to the
defined CMI data types.

 SCOFunctions.js contains functions encapsulate
actions that are taken when the user navigates
between SCOs, or exits the Lesson.

1413

Once you include these files in an html page or other SCO.
You could use the functions that they have implemented to
communicate with the API implemented in the LMS, Fig. 12.

Figure 12. API.

It is very important to tell that when you create a web o
remote labs you can use programming languages that don´t
allow embedding JavaScript code, in this case we can integrate
this lab in and iframe of a web page and in this page adds API
functions to establish a communication with the LMS. The
main problem is that the lab couldn´t communicate directly
with the LMS. At this moment there are several projects to
implement this API with web services.

So, the first thing that we have to do is to collect the
resources that are going to composed the SCORM (html pages,
images, etc.) and include the javascript files, that implement
the API functions such as initializing the connection,
exchanging information between SCO and LMS and finishing
the connection, in the SCO that we want to communicate with
the LMS. Later we have to establish an organization of every
one of the resources to compose aggregation content.

Nowadays there is a great number of tools (free or
commercial) allowing creating SCORM packages in a
graphical way. So the teacher o learning designer, who don´t
know about XML, can create their own SCORM packages
without problems. Some of these free tools are:

 Reload, Reusable eLearning Object Authoring
and Delivery.

 Couselab, is a free program but is not open
source.

 eXe OPEN SOURCE SCORM Development
Package

For this small example of weblab SCORM we have used
Reload [11] and have include a web page named pag1.htm that
include an iframe whit a URL of web lab in, Fig. 13. Of course
you can include a web page hierarchy where you explain how
the web lab works, the experiments that user can carry out, etc.

Figure 13. SCORM package created with Reload.

Once you save it, you could install this package in every e-
learning platform that supports the same SCORM version that
you have created. In the figure 14, we can see the result of
installing this SCORM in Moodle.

Figure 14. SCORM installed in Moodle.

Besides of creating an SCORM with a weblab, information
about the experiment, etc and can use it in different LMSs
(reusing). Also the user could use the LMS services as: Chats,
Forums, Storage area, etc without having to be written a code
line by lab programmer.

We have mentioned the problem in which code of web lab
doesn´t allow embedding JavaScript and therefore there is no
direct communication between web lab and LMS. To solve this
and other problem as:

 What happen if the URL of web lab changes
 If we have several identical web labs and one this

less busy than other (load balancing)
 If we simply want that web lab send information

in a directly way
 Etc.

To solve this and other problems, we are working in a
middleware for merging and managing both LMSs and web,
remote labs in one.

1414

VI. NEW MIDDLEWARE
In his section we are going to focus on a middleware and

architecture to manage and integrate both solutions in one, Fig
15.

Internet
Student

Student

Internet

Broker

Server

Data Base

?
?

InstrumentsController

Software Lab

LMS

M

I

D

D

L

E

W

A

R

E

Internet

Internet
?

?
InstrumentsController

Software Lab

Figure 15. Integration LMS, iLabs and Virtual Labs.

To design this architecture we have to consider several
ideas that have been mentioned in the previous sections:

1. The most of the LMS is composed by data base, a
logical programming structure (modules, blocks,
packages, etc.) and Web servers. So, we can
design a module or package that use a database
where is stored information about the laboratories,
experiments, the pair lab-course, etc.
Therefore if we design a module in an open source
LMS as Moodle, this module could be installed in
every server that contains an instance of Moodle.
And the same if we create a package in .LRN or in
other open source LMS as claroline, sakai, etc.

2. The iLab Shared Architecture (ISA) to facilitate
the rapid development of new web labs and to
provide a mechanism so that students from one
university can use experiments and hardware
instruments published from another.

3. There are other laboratories that only need be
connected with a URL, with some information
through of URL or other type of connection.

4. Both LMS as Web and remote labs need be
displayed through Internet and by the way they
use Web servers.

If we consider these ideas, the first thing that we should
decide was what type of communication through Internet
allows establishing a good communication among different
systems and as well as provide several features as: scalability,
loose coupling, etc. One of the best solutions that fulfil with
these requirements is Service Oriented Architecture (SOA),
Fig. 16.

As you can see in the figure 16, SOA [12-15]is based on
services, to avoid the duplicating the services, the services
providers publish information about the web service. The web
service clients can search for the web services directory, if
there are any web services that carry out the actions that the
client need. If it is found the client bin and invoke the web
service that is located in the provider.

Figure 16. SOA.

All this process used several standards as:
 Web Services Description Language (WSDL) is

an XML format for describing network services as
a set of endpoints operating on messages
containing either document-oriented or procedure-
oriented information. The operations and
messages are described abstractly, and then bound
to a concrete network protocol and message
format to define an endpoint.

 Discovery and Integration (UDDI) is a directory
service where providers can register and clients
search for Web services.

 Simple Object Access Protocol (SOAP) is a
lightweight protocol for exchange of information
in a decentralized, distributed environment. It is an
XML based protocol that consists of three parts:
an envelope that defines a framework for
describing what is in a message and how to
process it, a set of encoding rules for expressing
instances of application-defined datatypes, and a
convention for representing remote procedure calls
and responses.

One part of SOA is the infrastructure that allows you to use
services in a productive system. This is usually called the
enterprise service bus (ESB), Fig. 17. The responsibilities of
ESB involve:

 Providing connectivity
 Data transformation
 (intelligent) routing
 Dealing with security
 Dealing with reliability
 Service management
 Monitoring and logging

Therefore, this middleware establishes a way to
communicate heterogeneous systems (such as old systems and
new systems), provides a set of features as routing, security,
etc. And it is based on Standards as WSDL [16], UDDI [17],
SOAP [18], etc.

1415

Figure 17. ESB.

VII. LMS (MODULE, PACKAGES BLOCKS, ETC.)
One of the first steps to define and design the architecture

mentioned in the last section is to create LMS architecture. So,
we have read that an open source LMS is composed by
database, a logical programming structure (packages, modules,
blocks, etc.) and web server. If we communicate and
programme this element we can create an architecture based on
services, Fig. 18.

Figure 18. Middleware to connect a client with open source LMS as Moodle

At this point, we are talking about the creating of one .LRN
package and a Moodle module to connect web and remote labs.

A. .LRN package:

We have defined and programmed a package for every
.LRN administrator can create an area where connect a web or
remote labs. To do this area we have created a package with
the followed elements:

 A set of table associates to .LRN database (oracle
or postgres) to store the created laboratory, the
experiments that you are going to do, the way of
connection between .LRN and web or remote lab,
etc.

 A Logical programming (using Tool Command
Language TCL) to exchange information between
user and LMS, etc.

 And a user interface (ADP or HTML files).

Once the package has been installed in the .LRN the
administrator could create all the areas that we need. This area
is composed by, Fig. 19:

 A navigation menu where we can find services as:
o Calendar
o Asynchronous communication (forums, etc.)
o Synchronous communication (chats, etc.)
o Experiment area where are stored user

manual, texts about the experiment, etc.
o And area to display the remote labs and

where the students can be work with it.

Figure 19. .LRN package.

B. Moodle Module:

To create a lab module in its first version we have carry out
the next step:

1- We have created a set of table and have related them
with Moodle database. To create this table we have
used a XML file called intall.xml that uses Moddle to
allow generating these tables with independence of the
type of database that you install in Moodle (mysql,
oracle, etc.).

2- We also modify the administration site for allowing
that the administrator is able to add, modify and delete
the labs or server broker (in case of iLab) and the way
of connection of these, Fig. 20.

3- Later we have created te PHP file that provide of tle
logical of module, as:

a. Add a laboratory to a course.
b. To Call connection services
c. To store information in the tables of module
d. Etc.

As a result of this a teacher could add every lab which has
been inserted, using Administration site, in a course, Fig
21.
If we click on the created link then the students log in the

web lab directly. Of course this is a first version so that we
connect with web labs that require the username and password
through URL. We are working in designing and
implementation the web services into LMS.

1416

Figure 20. .Adding option to Administration site of Moodle.

Figure 21. .Adding a web lab in a Moodle course.

VIII. FUTURE WORKS
This is a strong first step to connect LMS with iLabs and

remote labs, and obtain shared labs, reuse of services and
merge of these two solutions. But, of course we have to work
in several important aspects:

 Design and implement web services in the open
source LMS as Moodle or .LRN. For example
scheduling service.

 Allowing LMSs and iLabs and web labs to use a
single sign on

 Designing and implementing a enterprise service bus
and the connector that systems need.

 Establish a common way to connect LMSs and iLabs
and remote labs.

 Also we would like to work in the idea to describe
web labs, so we can define an standard like WSDL or
UDDI to search for web labs and bind with provider.

IX. CONCLUSIONS
We are working in a middleware and architecture that allow

connect different systems and at the same time offer:
 Data transformation
 (intelligent) routing
 Dealing with security
 Dealing with reliability
 Service management
 Monitoring and logging

X. 8 ACKNOWLEDGEMENT
The authors would like to acknowledge to the Spanish

Science and Innovation Ministry for the support of the project
TIN2008-06083-C03/TSI “s-Labs – Integración de Servicios
Abiertos para Laboratorios Remotos y Virtuales Distribuidos”

REFERENCES
[1] E. Sancristobal, S. Martín, R. Gil, E. López, G. Díaz, E. Ruiz, M. Castro,

and J. Peire, Integrating and Reusing OF Virtual Labs in Open Source
LMS. REV 2008 International Conference Dusseldorf.

[2] J. L. Hardison, K. DeLong, P. H. Bailey, and V. J. Harward. Deploying
Interactive Remote Labs Using the iLab Shared Architecture. FIE 2008.

[3] iLab, MIT http://icampus.mit.edu/iLabs/ (November, 2009).
[4] Moodle http://moodle.org/development/ (November, 2009).
[5] DotLRN http://dotlrn.org/ (November, 2009).
[6] Sakai http://sakaiproject.org/ (November, 2009).
[7] Claroline http://www.claroline.net/ (November, 2009).
[8] C.C. Ko Chen, Creating Web-based Laboratories. Ed. Springer, 2004.
[9] http://www.adlnet.org/Pages/Default.aspx (November, 2009) .
[10] http://www.adlnet.gov/Technologies/scorm/SCORMSDocuments/2004

%204th%20Edition/Documentation.aspx (November, 2009).
[11] http://www.reload.ac.uk/ (November, 2009).
[12] D. Nickull; D. Hinchcliffe; J. Governor, Web 2.0 Architectures, 1st

Edition O'Reilly Media, Inc., 2009.
[13] N. M. Josuttis. SOA in Practice: The Art of Distributed System Design

(Theory in Practice). O'Reilly, 2007.
[14] D. A Chappell. Enterprise Service Bus. O'Reilly MediaReleased, June

2004.
[15] T. Erl. Service-Oriented Architecture (SOA):Concepts, Techno-logy ,

and Design. Pearsdon 2005.
[16] http://www.w3.org/TR/wsdl (November, 2009).
[17] http://www.oasis-open.org/committees/uddi-spec/faq.php (November,

2009).
[18] http://www.w3.org/TR/soap/ (November, 2009).

1417

http://icampus.mit.edu/iLabs/
http://moodle.org/development/
http://sakaiproject.org/
http://www.claroline.net/
http://www.adlnet.org/Pages/Default.aspx
http://www.adlnet.gov/Technologies/scorm/SCORMSDocuments/2004%204th%20Edition/Documentation.aspx
http://www.adlnet.gov/Technologies/scorm/SCORMSDocuments/2004%204th%20Edition/Documentation.aspx
http://www.reload.ac.uk/
http://www.w3.org/TR/wsdl
http://www.oasis-open.org/committees/uddi-spec/faq.php
http://www.w3.org/TR/soap/

