

 –

A Middleware for the Integration of Third-party
Learning Tools in SOA-based Learning Management

Systems
Supporting Instance Management and Data Transfer

Jorge Fontenla González, Manuel Caeiro Rodríguez,
Martín Llamas Nistal

Department of Telematic Engineering, University of Vigo
ETSE Telecomunicación, Campus Universitario

36310 Vigo, Spain
{jfontenla, manuel.caeiro, martin.llamas}@det.uvigo.es

Elio Sancristobal, Manuel Castro
Electrical and Computer Engineering Department

UNED - Spanish University for Distance Education
Madrid, Spain

{elio, mcastro}@ieec.uned.es

Abstract— The widespread adoption of broadband Internet

connections and the need of institutions such as universities or

enterprises to provide their staff with continuous education have

led to a fast adoption of Learning Management Systems. These

systems typically provide a centralized environment where

students can communicate, carry out experiments, etc. However,

the rapid growth of these platforms together with the unlimited

need for learning tools, mainly in engineering education contexts

(e.g. simulators, communication tools), are hindering their

development. The natural alternative is to decouple these tools

from the Learning Management Systems themselves, taking

advantage of the Software as a Service distribution model. To

perform such a decoupling a middleware is required to allow the

integration and use of an external tool by the Learning

Management System. In this paper a proposal for such

middleware is described, with a special focus on the part devoted

to manage instances and the transfer of data.

Keywords- Data-transfer interface; Hard integration; Instance

Interface; Learning Management Systems; Middleware; Software

as a Service.

I. INTRODUCTION

Engineering education is experiencing great changes during
the last years. Many of these changes have been promoted by
the adoption of new technologies, broadly Web-based
applications. Learning Management Systems (LMSs) are
playing a key role in this scenario. Some of the best-known
examples are Moodle [1], Blackboard [2] and .LRN [3]. These
systems typically facilitate the control of educational
activities, providing a centralized environment to organize and
provide information, to support the communication between
teachers and students, to enable the interchange of documents,
to answer online questionnaires, etc. Nevertheless these LMSs
are too generic. The “one size doesn't fit all” problem is very
notorious here, since their functionalities are generally
designed for the support of a general educational approach
based on the delivery of contents. Nevertheless, many

engineering subjects require not just the delivery of contents,
but also the performance of experiments, practical
developments and collaborative works among students.
During the last years these activities have been supported in
several ways by technology-based solutions developed outside
of the LMSs: simulators, remote labs, agent-based
environments, games, immersive environments, etc. As a
result, a plethora of tools and services is currently required for
the support of engineering education e-learning courses, but in
general they are not available in LMSs.

The previous problems have been identified as LMSs’
tailorability and extensibility deficiencies that need to solved.
Up to date, some solutions have been proposed, but with
limited success. For example, Moodle and Blackboard have
capabilities to extend their own functionalities: the so-called
“extensions” [4]. However, in these systems integration of
external tools is considered only a supplement. As a result, it
is possible to include a new tool in Moodle or Blackboard, but
the integrated tools do not work in coordination with the core
LMS. On the one hand, LMSs lack any means to monitor and
control the way users work with tools. This is the case, for
example, when we want to track students' activities. On the
other hand, LMSs are not able to control the interaction of the
users with the external tools.

The tailorability and extensibility deficiencies found in
existing LMSs, together with the essential need of extensions,
have led us to the conception of a middleware to enhance and
facilitate the integration between LMSs and third-party tools.
This middleware is based on a Software as a Service (SaaS)
distribution model that allows the LMS to use third-party tools
exposed as Web Services. In this paper we give an overview
of the different communication protocols, components and
software stacks involved. A comprehensible description is out
of the scope of this article, and therefore we put the focus on
two key parts of the middleware: the Instance Interface (those
elements to create and manage the instances of a third-party
tool), and the Data-Transfer Interface (those devoted to

869

–

transfer data elements between the LMS and the tool). Their
development has been based on the study of existing solutions
and the application of a rigorous analysis of requirements.

This paper is organized as follows. Section 2 analyzes
different ways in which LMSs can be extended according to
the level of functionality achieved, and puts the data-transfer
middleware in this context. Section 3 poses a typical scenario
where the need of creating and configuring instances and
transferring data between a LMS and a tool is clear. Next,
Section 4 gives a brief description on the middleware and the
way it has been structured to accomplish integration of third-
party tools, and Sections 5 and 6 focus specifically on the
Instance Interface and the Data-Transfer Interface. Section 7
provides a proof of concept, and Section 8 ends up with some
conclusions.

II. INTEGRATION OF THIRD-PARTY TOOLS

The basic problem of this research has been how to develop
an LMS whose functionality can be extended at a minimum
cost. In addition, the new functionality has to be appropriately
integrated with the previous one of the LMS. This problem
can be considered in a broader context, as the general problem
of extending a Web application.

At this point we have considered two different alternatives
to integrate third-party tools in a Learning Management
System, which are also considered in [5]:

· Soft integration of third-party tools. The LMS

functionality can be extended through a hyperlink to an
(external) third-party component. Once the user clicks on
it, the graphical user interface of the tool is displayed.
From this point, users are operating a system that the
LMS cannot control by any means. Therefore, a new
functionality is included but it does not work in
coordination with the core LMS, resulting in a very “soft”
integration.

· Hard integration of third-party tools. It includes the soft
integration, but providing the LMS with comprehensible
control over the integrated tools. We describe in the next
paragraphs our proposal for such a comprehensible
control.

In soft integration a third-party application can be

“inserted” in the page of the LMS, providing its users with a
unified environment to carry out their tasks. However, the
only part of the application that can be controlled by the LMS
is a link to the tool. The LMS does not have any means to
supervise and alter the behaviour experienced by its users on
the application. This functionality can be enough in some
cases, but not always. Hard integration, on the other hand,
allows the LMS not only to link the application, but also to
supervise and alter the behaviour of the tool as required.

As discussed in [6], the control of the operation of the tool
to achieve hard integration involves the following issues:

1. Creating a working account (i.e. an instance) for each user
at the tool. For example, in a “Hydrodynamics” course an
instance can be created for a student at a fluids simulator.

2. Transferring from the LMS to the tool all those data that
the user may need in order to carry out his/her tasks. In
the case of a fluids simulator, the LMS may send the
boundary conditions required for the hydrodynamics
problem.

3. Establishing some access permissions over these data and
the tool functionality. In our example, the student may be
assigned execution permissions over the part of the
application responsible for launching the simulation.

4. Subscribing to events result of the manipulation of the
tool. For example, the LMS may be interested in knowing
when the student launches a simulation, and hence it has
to subscribe to the corresponding event type.

5. Authorising the user to access the instance. In our
example, the student may not have a working account at
the fluids simulator, in whose case the LMS has to grant
him/her access as guest user. Otherwise, if the student is
not involved in the subject he/she should not be granted
access.

6. Altering the behaviour of the tool according to the
information provided by the events triggered. For
example, if the result of the fluids simulation is correct
the LMS may order the simulator to give a verbatim
explanation of the physical laws involved in the problem.

Figure 1 summarizes the difference between hard and soft
integration in terms of the six aspects mentioned above.

III. AN API FOR THE INTEGRATION OF TOOLS

The highest level of integration can be provided by the
architecture depicted in Figure 2. The picture corresponds to a
refinement of the TCP/IP protocol stack. Unlike the typical
TCP/IP stack, the Application layer is further decomposed into
three additional layers:

· High-level entities. The LMS and the third-party tool.

They provide the bulk of the learning functionalities, but
employ the integration managers to interact and
complement each other.

· Integration managers. A set of classes and interfaces
used by both high-level entities that enable to control and
supervise the behaviour of the third-party tool by the
LMS. In other words, these integration managers carry
out tasks that enable to achieve hard integration. Each
integration manager deals with a different task.

· Integration protocols. A set of protocols that allow the
integration managers at the LMS and the tool to
communicate.

870

–

Figure 1. Difference between hard integration and soft integration.

As in the standard TCP/IP stack, each layer perceives a

direct communication with an analogous layer at the remote
host. Therefore, integration protocols communicate with
analogous integration protocols, integration managers
communicate with analogous integration managers, and high-
level entities communicate with high-level entities, see Figure
2.

Figure 2. Hard integration architecture.

The conceptual layer diagram of Figure 2 is complemented

by a class diagram representing the classes, components and
interfaces that build up the layers of both the LMS and the
Tool. Figure 3 provides such diagram just for the case of
LMS. The diagram of the Tool is symmetrical due to the
abovementioned property of the TCP/IP protocol stack of
direct communication between layers.

In this diagram the high-level entity is represented as a
UML component without any further class decomposition.
The reason is that a high-level entity is a complex system,
involving many classes and packages whose relationships are
not relevant for our purposes.

Beginning with the diagram of Figure 3, the LMS invokes
the methods of the integration managers to alter the behaviour
of the tool (e.g. a method for granting write permissions over a
file, for subscribing to a particular event). Each integration
manager deals with a different aspect of hard integration, up to
the six different aspects enumerated in Section 3.2. The LMS
does not have to worry about the code structure of the

integration managers but only about the methods they provide
and the functionality of each of them. Therefore, each
integration manager realizes an interface, which is exposed to
the LMS.

The integration managers of the LMS use the integration
protocols to communicate with the tool. The integration
protocols, both those at the LMS or at the tool, carry out the
effective exchange of messages, dealing with the logic of the
messages sent between both entities (sequencing, detection of
invalid messages, etc.).

When the message has been delivered to the integration
protocol of the tool it is passed to the corresponding
integration manager, which alters the behaviour of the tool.

Figure 3. UML class diagram of the LMS.

In this article we will describe only the Instance Manager-

Protocol and the Data-Transfer Manager-Protocol. Taking this
framework as a starting point, the only missing points are the
following:

· Firstly, an enumeration of the methods supported by the

Instance Manager and the Data-Transfer Manager.
· Secondly, a description of the way the Instance Protocol

and the Data-Transfer Protocol work.

In order to specify the functionalities of both pairs
Manager-Protocols (or simply “Interfaces”) we will firstly
describe a typical use case in Section IV involving the creation

871

–

and management of instances in a remote tool, and the transfer
of data between a LMS and the tool. This use case will help us
to develop the abovementioned logic in Sections V and VI.
The descriptions carried out in Sections IV, V and VI follow a
constructive approach, i.e. they represent the same creation
process taken by the authors when developing the full
middleware.

IV. A TYPICAL SCENARIO

For our purposes (defining the Instance Interface and the
Data-Transfer Interface) we will consider a LMS hosted and
managed by the University A. This LMS offers its students the
possibility to use a collaborative tool hosted and maintained
by the University B.

Students of a certain course in a Telecommunications
Engineering degree use the University A’s LMS. At a certain
part of the course, students are expected to work in groups to
accomplish a task. The tool at University B provides the
desired functionalities. Therefore, the LMS creates one
instance of the tool per working group. The work of one group
should not interfere with another group’s (e.g. a group should
not cheat trying to copy another group’s work). In this way,
when the members of the group get access to the tool they join
their particular instance where they find a copy of the wording
of their assignment along with appropriate documentation.

At a certain point of the schedule the teacher wants to
qualify the pieces of work created by each group. At this time,
the access to the instances needs to be blocked. When the
teacher finishes the qualification instances are unlocked again
to enable students continue working. This unlock may be
followed by the transfer of the wordings of new assignments.

During all the process it is feasible that some students may
have some tasks validated by previous activities. In this case
they do not need to perform the assignments and therefore
their membership to their respective groups should be
revoked. Similarly, some new students may be assigned to
some existing group by some reason.

Suddenly, some unexpected behaviour is experienced at the
tool provided by the University B (e.g. server crashes). In
view of this fact the LMS requests a full backup of all the data
generated by the groups. If University C provides a tool with
similar functionalities to University B’s the LMS creates new
instances in University C’s tool for each group and restores
the backup copies in them.

In sections V and VI we use this scenario to explain the
requirements we have identified for the Instance and Data-
Transfer Interfaces. We adhere to a strict software engineering
approach, firstly identifying the requirements of a solution,
then analyzing existing technologies against these
requirements, and finally coming up with a proposal that
overcomes the identified limitations.

V. THE INSTANCE INTERFACE

The first of the interfaces that will be described is the
Instance Interface. This Interface is devoted to the control and
management of the instances of a tool. We understand by
instance of a tool a working environment along with a

graphical user interface, several files to manipulate, and a set
of users allowed to access it.

A. Requirements

On the basis of the use cases included in the scenario
described in Section IV we can enumerate the following
requirements for a data-transfer solution:

· Interoperability: the LMS should interoperate with a

Web tool even if they are in different network domains.
This is necessary as in the general case the Web tool and
the LMS are located at different network domains.

· User-oriented instances: as pointed in Section IV, it
should be possible to add specific users to specific
instances of the tool. Particularly, depending on the kind
of tool one instance could be assigned one or many users.

· Disjoint instances: the membership of one instance
should not affect either the membership or the state of
other instances.

· Dynamic reconfiguration: it should be possible to
remove participants from an instance or add new ones
during runtime.

· LMS-controlled membership: it is the LMS which
decides which user is assigned to each instance of the
tool. In Section IV it is the LMS which creates the
working groups.

· LMS-controlled instances: the LMS should be able to
create, delete, suspend temporarily and resume instance
depending on the requirements of the course. In Section
IV the LMS suspends the instances during the teacher’s
evaluation.

B. Related Works

Previous to the development of an interface we perform a
study of the state of the art. Unlike other interfaces such as the
Data-Transfer Interface in Section VI or the Authorization
Interface [7], the study of the state of the art in the field of
instance management did not bring out significant results.
There are not systematic approaches to control and manage
instances, which in part is understandable due to the vast
diversity of tools and requirements involved.

Given this heterogeneity we decided to concrete our
research and investigate the state of the art of the most
common learning tools [8]. This research has been fruitless in
many cases, but in the fields of chats and conferences we
came across several specifications to define how to create
instances and manage them once created.

RFC2811 [9] addresses the creation and control of chat
rooms or “channels” (i.e. concrete instances of the chat tool).
In its simpler version, new channels are created whenever its
first user joins it. This user is assigned the role of “channel
founder” and has unlimited privileges over the channel. Since
the channel is created other users are free to join it unless the
founder explicitly puts them in a black list. Other parameters
that can be set by the founder include silencing the room,
setting a welcome message, or establishing a user limit for the

872

–

channel. When all users have left, the channel is finally
deleted.

RFC4353 [10], on its turn, specifies how to use the SIP
protocol in order to initialize, modify and terminate media
sessions between multiple participants or “conferences”. The
RFC regards a specific conference as an instance of a multi-
party conversation. The document addresses common instance
operations (creating and destroying an instance, and adding,
removing and listing participants) and specific conferencing
operations (adding and removing media, and recording a
conversation).

Table I summarizes the behaviour of these two
specifications against our requirements.

TABLE I. COMPARATIVE ANALYSIS OF RFC2811 AND RFC4353.

 RFC2811 RFC4353

Req. 1 YES YES

Req. 2 YES YES

Req. 3 YES YES

Req. 4 YES YES

Req. 5 NO NO

Req. 6 NO NO

We see that these RFCs have been written to describe

services that, although they behave well against our
requirements, they have not been thought to be operated by a
third-party system but directly by (one of) its users. Therefore,
our Instance Manager offers similar functionalities to these
RFC, but providing the LMS with full control of the creation,
deletion and state of the instances. Eventually, this control
could be transferred by the LMS to the users.

C. The Instance Manager

As described in Section III, the approach we have followed
is the decomposition into a Instance Manager providing a
known interface, and a Instance Protocol responsible for the
actual transfer of data (see Figures 2 and 3). Both the Manager
and the Protocol have to be implemented at both the LMS and
the tools. Table II summarizes the methods and input and
output parameters of the Instance Manager.

TABLE II. METHODS OF THE INSTANCE MANAGER.

Method Input parameter
Output

parameter

createInstance name URI

suspendInstance URI result

resumeInstance URI result

addUser URI, userID result

removeUser URI, userID result

deleteInstance URI result

Instances are uniquely identified by its URI (Unified
Resource Identifier). All operations receive the URI of the
instance as an input parameter (except the method for creating
an instance, which returns the URI of the new one). The field
result contains a verbatim message containing the success or
not of the operation (e.g. “OK”, “Error - Instance not found”).
Finally, each LMS is responsible for assigning its users a
unique userID to avoid colliding usernames at the tool.

D. The Instance Protocol

The specifications described in Section V-B describe
complex and very specific protocols to manage instances from
an external entity, which do not adapt to our scenario.
Therefore, a light Instance Protocol has been specifically
designed to work with the Instance Manager.

The Instance Protocol is based on the exchange of plaintext
HTTP messages with specific headers. All the message
exchanges take place exclusively between the LMS and the
tool (i.e. the final user of the tool does not take part in them).
HTTP is specially suited for the design of a client-server
interface such as the Instance Interface, as it offers the
capability to send parameters in the header of the messages.

The format of the headers follows a simple structure. Each
parameter goes in a different extension header. For example,
should the parameter URI be sent, the corresponding header
would be something like URI:

www.mylearningtool.net/specificinstanceuri. Additionally,
there are two more headers. On the one hand, the
InstanceMethod header specifies the method of the Instance
Manager that is invoked by the LMS. On the other hand, the
RequestID header identifies the request from any other request
from this or any other LMS. This is useful for the LMS to
match the incoming response with a previous request. Figure 4
depicts a sample message of the Instance Protocol.

Figure 4. Sample message of the Instance Protocol.

VI. THE DATA-TRANSFER INTERFACE

In this section we describe the Data-Transfer Interface. As
described in Section III, the approach we have followed is the
decomposition into a Data-Transfer Manager providing a
known interface, and a Data-Transfer Protocol responsible for
the actual transfer of data (see Figures 2 and 3). Both the
Manager and the Protocol have to be implemented at both the
LMS and the tools, in order to allow the virtual direct
communication among layers described in the TCP/IP
protocol stack. It has been our intention to build a simple and

873

 –

lightweight solution that could work in any kind of learning
environments where two entities need to transfer data.

The structure of this section is analogous to that of Section
V. Starting with an analysis of the requirements, we list some
related works and study their behaviour against our
requirements. Next, we get into some detail of a Data-Transfer
Manager and a Data-Transfer Protocol solving the previous
limitations.

A. Requirements

As with the analysis of requirements carried out for the
Instance Interface in Section V, On the basis of the use cases
included in the scenario described in Section IV we can
enumerate the following requirements for a data-transfer
solution:

1. Interoperability: the LMS must be able to interoperate

with a Web tool even if they are in different network
domains.

2. Bidirectionality: the solution must enable to transfer data
either from the LMS to the tool, or from the tool to the
LMS. Moreover, the communication can be started by any
of these entities. For instance, in the example of Section
IV the tool could fetch from the LMS an avatar for each
student.

3. Granularity and bulkability: the solution should accept
the transfer of single data elements (Granularity) as well
as the transfer of multiple data elements in a single
message (Bulkability). In the use case of Section IV, for
example, transfers involve both single data elements (the
wordings of the assignments) and full backup copy.

4. Scheduled and on-demand transfers: the transfer of
data can be made either on demand, or in a scheduled
fashion. In the latter case, it should be possible to specify
at least the time of the transfer, and which data elements
are going to be sent. For instance, in the scenario of
Section IV the LMS could request backup copies from the
tool of University B every hour.

5. Bandwidth efficiency: the solution should not be
bandwidth intensive (e.g. in the case of frequent bulk
copies). This includes the sending of incremental
backups, including just those elements that changed since
the previous copy.

6. Transparency: the user should not be aware of the data-
transfer process that is taking place while he/she is using
the tool.

7. Integrity: in the general case, the data being transferred is
not fault-tolerant. Hence, the solution should provide
some mechanisms to check the consistency of the data.

8. Confidentiality: the solution should provide mechanisms
to treat the data as confidential when necessary.

B. Related Works

During the course of our work we studied several
standards and technological products devoted to the transfer of

data between two entities. Some of these products have
relationship with the e-learning field, while some others are
for general purpose. Aware that this is a very wide category,
we chose the following three representative technologies for
study: SCORM RTE, IMS SSP and W3C’s Storage interface.

ADL Shareable Content Object Reference Model [11]
(henceforth SCORM) is an effort to provide a set of
specifications, guidelines and standards to meet the
requirements for the Web-based delivery of reusable learning
contents. One of the results of this effort is the SCORM
Runtime Environment [12] (henceforth SCORM RTE), which
details the requirements for launching content objects
(henceforth SCOs) and establishing communication between
LMSs and SCOs. The RTE is a middleware that is
downloaded to the learner’s Web browser along with the SCO
itself. Whenever a SCO wants to begin a data transfer with the
LMS invokes the getValue or setValue methods of the RTE.
All the transfers are initiated by the SCO.

There are two main deficiencies in SCORM RTE that
avoided us from choosing it as our data-transfer solution.
Firstly, it provides a very limited set of methods, as it only
allows the transfer of single data elements and not full
backups. Secondly, it has been designed with a very concrete
and simplistic scenario in mind (namely, a SCO making
requests to a LMS following a client-server approach) which
is slightly different from ours. We are considering tools in
general and not SCOs uniquely.

IMS Shareable State Persistence [13] (henceforth IMS
SSP) has been posed as an extension of SCORM to support
the storage and retrieval of information from shared
dataspaces called “buckets”. The main goal of IMS-SSP has
been to provide SCORM’s SCOs the ability to share
information among them which, according to the IMS, would
allow to make more reusable content objects.

On addition to the methods getValue and setValue of
SCORM RTE, IMS SSP considers the methods appendData,
getData and setData that work over buckets. Unlike the
methods of SCORM, these three methods allow not only to
transfer single data elements but also collections of them with
a single call. Nonetheless the operation of IMS SSP is similar
to SCORM RTE’s: it has been designed for scenarios where
SCOs makes requests to an LMS by means of a runtime, and
the LMS consequently replies to the request. There is no kind
of bidirectionality between the entities involved. Other
requirements of Section VI-A such as Bandwidth efficiency,
Integrity or Confidentiality are neither considered.

Finally, W3C Storage [14] is a mechanism designed for
storing user’s data in general-purpose Web applications due to
the W3C Consortium, allowing persistent storage lasting the
current browser session. Storage has been developed as an
interface to access a standardised set of methods in the Web
application. These methods include getItem, setItem,
removeItem and clear to operate over data elements
represented as key-value pairs (both keys and values are
strings). The invocation of these methods is carried out by
some JavaScript code running in the browser. Despite Storage
is designed for a general-purpose scenario involving a Web

874

 –

application and a browser, its working principles remain the
same with regards to SCORM RTE and SSP. The
specification involves a client-server architecture where the
browser makes requests to the Web application, and the latter
performs some operations over the stored data and replies to
the browser. On top of that, the set of methods work over
specific data elements and do not allow any kind of planned
transfers or incrementality. All these issues are a consequence
of the fact that Storage is a quite simplistic solution for our
needs, and therefore exhibits a poor behaviour against our
requirements.

Table III summarizes the analysis of the three technologies
considered in this section against our requirements.

TABLE III. COMPARATIVE ANALYSIS OF SCORM RTE, IMS-SSP AND
W3C STORAGE.

 SCORM RTE IMS SSP W3C Storage

Req. 1 YES YES YES

Req. 2 NO NO NO

Req. 3 NO NO NO

Req. 4 NO NO NO

Req. 5 NO YES NO

Req. 6 YES YES YES

Req. 7 YES YES YES

Req. 8 NO NO NO

C. The Data-Transfer Manager

The underlying Data-Transfer Protocol is wrapped by the
Data-Transfer Manager, which provides a standardised set of
methods. Five methods, summarized in Table IV, have been
considered to read the value of a data element
(getDataElement), to overwrite it (setDataElement), to get an
on-demand backup copy of the data of the instance
(getBackup), to restore it (restoreBackup), and to schedule the
transfer of future copies (scheduleBackup). These five
methods can be divided into two groups: those that can be
invoked by either the LMS or the tool (getDataElement and
setDataElement), and those that can only be invoked by the
LMS (getBackup, restoreBackup, scheduleBackup). An
example of the first kind of methods takes place when the tool
requests the name of the learner to the LMS using
getDataElement, whilst an example of the latter could be an
LMS requesting a backup copy of the data hosted at a tool by
the use of getBackup, and transferring it to another tool using
restoreBackup.

Table IV shows the methods along with their input and
output parameters. All of them have an id input parameter,
which refers to an identifier of the data involved (whether a
single data element or a full backup). The parameter data
contains the value of the data element or the backup being
transferred, and has the same meaning whether considered as

an input or output parameter. The parameter result contains a
verbatim error code, if any (e.g. “The requested data element
has not been initialized”). Finally the parameters incremental,
time and period are specific for the request and scheduling of
backup copies. The parameter incremental contains “false” or
“true” if the backup is considered standalone or incremental.
The former includes all the data at the tool, while the latter
only contain those files that have changed since the last
backup. This “incrementality” boosts the performance of a
backup transfer, which is typically bandwidth-intensive. On its
turn, the parameters time and period are devoted to schedule
the periodical transfer of copies from a predefined point in
time (e.g. the transfer of copies every 10 minutes from 9 pm).

TABLE IV. METHODS OF THE DATA-TRANSFER MANAGER.

Method Input parameter
Output

parameter

getDataElement id data

setDataElement id, data result

getBackup id, incremental data

restoreBackup id, data result

scheduleBackup
id, incremental,

time, period
result

D. The Data-Transfer Protocol

A simple Data-Transfer Protocol has been specifically
designed to work with the Data-Transfer Manager. The reason
is that none of the technologies described in Section VI-B
satisfies our needs to request, pack, transfer and restore data,
and therefore a light ad-hoc Data-Transfer Protocol has been
developed.

Figure 5. Sample message of the Data-Transfer Protocol.

As the Instance Protocol, the Data-Transfer Protocol has

been designed as an extension of the HTTP protocol with
special header extensions. Again, HTTP is specially suited for
the design of a Data-Transfer Protocol, as it offers not only the
capability to send parameters in the header of the messages
(with the same format of the Instance Protocol), but also a
payload to transfer binary data. On top of that, HTTP provides
integrity as it works on top of TCP. In case that confidentiality

875

–

(e.g. when a learning tools wants to transfer the marks of a
questionnaire to the LMS, at the transfer of a personal email
account linked to an instant messaging application) or
authenticity (e.g. to verify that the LMS managing the session
data is the same that created the user account) were required,
the Data-Transfer Protocol could use HTTPS instead.

Data are encoded using the BASE64 schema [15], and sent
in the payload of the HTTP message. Full backup copies are
packed as zip files prior to their transfer by means of the Data-
Transfer Protocol. The use of this format is not as unusual as it
may seem, as it is also the format used by Moodle to pack and
transfer educational contents [16]. Should any problem
occurred during the processing of the request, an error code
would be returned for the Data-Transfer Manager, along with
the habitual HTTP error code for the Data-Transfer Protocol.
Figure 5 depicts a sample message of the Data-Transfer
Protocol.

VII. PROOF OF CONCEPT

In order to demonstrate the feasibility of the approach, a
prototype consisting of a LMS and a learning Web tool has
been designed. Acting as LMS we deployed an instance of
Moodle (henceforth, “the LMS”). The choice of Moodle
responds to its important presence in online universities, as
well as to its opensource-ness. On the other hand, we deployed
another instance of Moodle just to use one of its tools (a
forum). The capabilities of the second instance of Moodle
(henceforth, “the forum”) to work as a full Learning
Management System are not used, but only its forum.
Whenever a user of the first instance of Moodle wants to use a
forum, the one of the second instance is used instead. The
forum of the first Moodle is “bypassed”.

A full implementation of the six parts of the middleware
described in Section III has not been made yet. Instead, we
just implemented the Instance Interface, Data-Transfer
Interface and Authorization Interface in both instances of
Moodle.

A simple test, summarized in Figure 6, has been made.
Firstly, the LMS used the Instance Manager to create a new
instance of the forum (i.e. a new conversation thread) named
“Waves”. When the instance has been created, users must be
added. In our case we added a student whose LMS user
account had been previously created manually. This action
does not grant instant access to the instance, but instead tells
the forum that the instance will be visible to the user when
he/she joins.

The next action carried out by the LMS was to post a
welcome message giving some explanations about the wave
equation. In terms of the middleware, this implied using the
method setDataElement of the Data-Transfer Interface. During
this proof of concept we tried to avoid the use of a complex
agreed vocabulary in order to describe every data element
hosted at the forum. Instead, we only used a data element
called newMessage, but the Data-Transfer Interface is flexible
enough to support any kind of vocabulary as long as it had
been previously agreed by both parts.

Finally, when the user accessed the forum application (by
means of the Authorization Interface, whose description can
be found in [7]) found the post of the LMS as if it had been
posted by any other user.

Figure 6. Proof of concept.

VIII. CONCLUSIONS

Current LMSs are playing an important role in providing
engineering education. However, their possibilities are limited
due a clear “one size doesn't fit all” problem. These limitations
have been the starting point of our research. The work
described in this paper tries to tackle these issues with
tailorability and extensibility in mind by the use of the SaaS
software distribution model.

The architecture described in this work is devoted to take
advantage of the SaaS model while at the same supporting the
concept of hard integration. At different with current solutions
that only enable a soft integration of third-party tools, our
architecture allows a harder level of integration. As a result,
the LMS can extend its functionality, and can do it in a
controlled way.

Our proposal not only implies the design of a new kind of
e-learning system, but also an entirely new business model
where the development of LMSs and educational tools follow
separate (but complementary) ways. In the final term this
business model implies more opportunities to bring students a
better and more applied education.

One aspect of the Data-Transfer Interface we deliberately
omitted is the use of some sort ontologies or agreed
vocabularies in order to uniquely identify each resource hosted
at the remote tool. Nonetheless, as pointed in Section VII the
Data-Transfer Interface provides enough flexibility to support
any kind of shared (semantic) knowledge. In fact, when we
began to work on the interface we assumed as a starting point
that there is already some kind of shared vocabulary, but no
effective data-transfer mechanism between LMS and tools.

Currently we are working on the middleware to give full
support to the other aspects of hard integration, apart from the

876

–

two interfaces described here and the Authorization Interface
described in [7]. Nonetheless, the six parts we have considered
are completely independent from each other, and they can be
used in a standalone way if desired. The source code of the
Data-Transfer Interface itself is available as open source and is
freely available for anyone interested in its use.

ACKNOWLEDGMENT

This work has been funded by the Spanish Ministerio de
Educación y Ciencia under the grant TIN2007-68125-C02-02,
and by the Galician Consellería de Innovación e Industria
under the grant PGIDIT06PXIB32 2270PR. Likewise, the
authors would like to thank CYTED, by means of its ACCIÓN
DE COORDINACIÓN 508AC0341 “SOFTWARE LIBRE EN
TELEFORMACIÓN”.

REFERENCES
[1] Web site of the Moodle project. Last accessed on November, 2009 at:

http://moodle.org/

[2] Web site of the Blackboard project. Last accessed on November, 2009
at: http://www.blackboard.com/us/index.bbb

[3] .LRN Web site. Last accessed on November, 2009 at: http://dotlrn.org/

[4] Moodle modules and extensions. Last accessed on November, 2009 at:
http://moodle.org/mod/data/view.php?id=6009

[5] M. Kyng, “Computers and Design in Context". The MIT Press, 1997.

[6] M. Caeiro, “PoEML: A separation-of-concerns proposal to instructional
design”, Handbook of visual languages for instructional design: theory
and practice, edited by L. Botturi and T. Stubbs, IGI Global, 2007.

[7] J. Fontenla, M. Caeiro, M. Llamas, L. Anido, “Reverse OAuth - A
solution to achieve delegated authorizations in single sign-on
environments”, Computers and Security. Last accessed in November,
2009 at: http://dx.doi.org/10.1016/j.cose.2009.06.002. Forthcoming
publication.

[8] Edutools. CMS: Product Comparison System. Last accessed in
November, 2009 at: http://www.edutools.com/compare.jsp?pj=4&i=550

[9] RFC 2811, “Internet Relay Chat: Channel Management”. Last accessed
in November, 2009 at: http://www.ietf.org/rfc/rfc2811.txt

[10] RFC 4353, “A Framework for Conferencing with the Session Initiation
Protocol (SIP)”. Last accessed in November, 2009 at:
http://www.ietf.org/rfc/rfc4353.txt.

[11] ADL SCORM specification. Last accessed in November, 2009 at:
http://www.adlnet.gov/Technologies/scorm/SCORMSDocuments/2004
%204th%20Edition/Documentation.aspx

[12] ADL SCORM Runtime Environment specification. Last accessed in
November, 2009 at:
http://www.adlnet.gov/Technologies/scorm/SCORMSDocuments/2004
%204th%20Edition/Documentation.aspx

[13] IMS Shareable State Persistence specification. Last accessed on
November, 2009 at: http://www.imsglobal.org/ssp/

[14] W3C Storage. W3C working draft. Last accessed on November, 2009 at:
http://www.w3.org/TR/webstorage/

[15] RFC3548, “The Base16, Base32, and Base64 Data Encodings”. Last
accessed on November, 2009 at: http://www.ietf.org/rfc/rfc3548.txt

[16] Moodle Docs Web site, “Tools for creating SCORM Content”. Last
accessed on November, 2009 at:
http://docs.moodle.org/en/Tools_for_creating_SCORM_content

[17] AICC CMI Guidelines for Interoperability. Last accessed on June, 2009
at: http://www.aicc.org/docs/tech/cmi001v3-5.pdf

[18] G. Gross, “Google, IBM Promote Cloud Computing”. PC World, 2007.

[19] Responsive Open Learning Environments. “Survey of learning-related
services”. Last accessed on November, 2009 at: http://www.role-
project.eu/wp-content/uploads-role/2009/09/role-deliverable-31.pdf

[20] S. Wilson, B. Olivier, S. Jeyes, A. Powell, T. Franklin, "A Technical
Framework to Support e-Learning." JISC, 2004. Last accessed on
November, 2009 at:
http://www.jisc.ac.uk/uploaded_documents/Technical%20Framework%
20feb04.doc

877

