

Dynamic Virtual Environment for Multiple Physics
Experiments in Higher Education

 Fabio Ricardo dos Santos1,3
1Graz University of Technology

Graz, Austria

 Christian Guetl1,2
2Curtin University of Technology

Perth, WA

Philip H. Bailey3, V. Judson Harward3
3Massachusetts Institute of Technology

Cambridge, USA

Abstract—The transportation of a campus classroom and/or
laboratory into a three dimensional virtual representation has
changed remote learning, specially in engineering education. Our
first collaborative virtual environment, a proof of concept,
provides full functionality of one physics experiment, though
there are still some performance issues to be resolved.

The next step for integrating TEALsim and iLabs in Sun’s
Project Wonderland is porting our system from Wonderland’s
version 0.4 to 0.5. Our goal is a system redesign in order to
support adding flexibility to multiple physics simulations. The
performance improvements in Wonderland 0.5 will allow a large
number of avatars in our future scenario, where they will be able
to run even more physics experiments, through a new 3D user
interface.

Keywords-collaborative immersive environment; virtual worlds;
Project Wonderland; iLabs; TEALsim; physics experiments, remote

labs, visualization.

I. INTRODUCTION
In the past few years, especially due to the increasing

availability of faster and robust hardware and software, 3D
environments have become common technology. Virtual
laboratories, scientific visualizations, and some collaborative
work approaches are just some of the successful fields of 3D
graphics applications.

One essential term is Virtual Environment (VE), which is a
computer generated spatial environment, where the stimulation
of diverse human senses gives the user a feeling of being
immersed. Immersion means how deep the user is emotionally
involved within a specific virtual environment [1].

Nowadays, a great research challenge for educational
technology professionals is to build technology that not just
supports the learning process, but also connect students and
educators in a way so they can easily cooperate, even when
both parties are geographically spread.

Our first collaborative virtual environment provides full
functionality of one physics experiment. This environment
results from the integration of internet-accessible physics
experiments (iLabs) combined with the TEALsim 3D
simulation toolkit in Project Wonderland [2]. Students and

educators, represented as avatars, within this environment can
remotely control experiment equipment, visualize physics
phenomena generated by the experiment and discuss results.
This environment was developed following the Technology
Enabled Active Learning (TEAL) classroom idea to support
social interactions, encourage student’s active learning and
interest, in an environment that fosters conceptual change [3].

This study explores the process of conversion of the
TEALsim simulation package to the rendering engine
jMonkeyEngine (JME), which is the graphics engine used in
Project Wonderland version 0.5. Additionally, we have built a
Wonderland cell class that can dynamically load TEAL
simulations into Wonderland by the end of the research project.
This will provide a collaborative environment similar to the
current 0.4 version, but using the new graphics engine.

Furthermore, we implemented an automatic generation of
the simulation's controls in the Wonderland environment either
as buttons, sliders and other control elements within the 3D
space or as elements in the Heads Up Display. These controls
will provide the standard Java event handling model.

Therefore avatars have the ability to directly interact with
TEALsim elements, including moving elements and activating
sensors. Changes in the environment would be updated in real-
time.

Finally, based on the latest research, this paper outlines the
future research directions and challenges to overcome.

This research has been partially supported by the Austrian Marshall Plan
Foundation.

Figure 1. Close-up view of the ‘Force on a Dipole’
Experiment in Wonderland 0.4

731

II. RELATED PROJECTS

A. iLabs
An iLab stands for an internet-accessible experiment that

can be reachable remotely at any time over the internet.
Compared to conventional laboratories, iLabs are available 24-
7 and are easily shared. Since they provide access to unique
remote resources, they are less expensive and complex than
conventional labs. Users can access these online laboratories
from around the world through a single standard administrative
interface. In engineering education, iLabs enrich the scope of
experiments students have available to them in the course of
their academic careers [4].

B. TEALSim
 TEALSim, the TEAL simulation system is designed as a
framework for authoring, presenting and controlling
simulations in a variety of domains. It was developed by the
Technology Enabled Active Learning (TEAL) Project at
Massachusetts Institute of Technology (MIT) [3]. Among
others, the objectives of this project are to increase student’s
conceptual and analytical understanding of the nature and
dynamics of electromagnetic fields and phenomena, and also
foster student’s visualization skills.

 Figure 2 illustrates an example of how TEALSim is very
useful in electromagnetism helping students to visualize and
process phenomena. During the Force on a Dipole experiment,
TEALsim enables students to see the invisible magnetic field
lines, which of course are not visible in real settings. This
visualization behaves according to changes in simulation input
values made by students, giving them a better understanding
of electromagnetic fields. Such visualizations allow students
to make abstract ideas concrete. [3]

C. Project Wonderland
Project Wonderland is a toolkit for building 3D virtual

worlds, which has been developed by Sun Microsystems
Laboratories [5]. Based fully on 100% open source Java
technology, Wonderland is extensible so developers and
graphic artists can extend its functionalities to create new
collaborative 3D virtual worlds. Wonderland also supports a
high level of communication via highly immersive audio and
enables desktop application sharing, among other features.

In the new redesigned version 0.5 of Wonderland, JMonkey
Engine is one of the supported rendering engines. In the
Wonderland project, jME helps us to specify 3D objects in a
scene [5]. This concerns an object’s size, appearance and how
they are related to each other. Not just computer graphics
operations such as lighting and texture can be done through
jME, but also complex techniques like particle systems.

MTGame is a Multi-Threaded Game engine build on top of
the jMonkey Engine scene graph [6]. Its main purpose is 3D
graphics content processing and rendering. MTGame extends
the capabilities of jME offering a fully parallel processing
model and a fully featured rendering system, which supports all
major rendering techniques. Besides that, three plug-able
systems are included: picking and collision, physics and an
input system for some input devices. So basically, MTGame is
a library for scene graph management and concurrency
management.

Animations and other changes, which happen in
wonderland scene graph over time, are managed by MTGame.
Developers can use MTGame to animate various 3D Object
attributes like position, color and lighting. Further information
about MTGame will be explained in the next session.

Besides the gain in performance, another important feature
of version 0.5 is the possibility of embedded Swing
components for user interface development in world. By
creating a swing-based interface, we can interact directly with
the experiment instead of interacting with a LabVIEW
application through VNC viewer.

D. jMonkeyEngine
Due to the lack of graphics engines written in Java, the

open source jME was built. jME is an Application
Programming Interface (API) dedicated for high performance
scene graph based graphics [7]. The feature list of jME is
extensive and includes embedded integration of Java Applets
and SWT (Standard Widget Toolkit). jME Desktop System is
responsible for the rendering of Swing components in jME
scenes.

III. COLLARBORATIVE VIRTUAL LEARNING ENVIRONMENT

A. Overview
In CLVE students are represented as avatars, through them

users communicate with each other, cooperate with other
students or educators to solve common physics problems and
experience physics experiments. This Virtual Environment
extends the real studio physics classroom in many ways in
order to support students understanding of physics concepts.

Figure 2. The TeachSpin™ apparatus from the Magnetostatics Session.

732

Students are able to interact with a remote experiment through
a 2D LabVIEW front panel, for example changing experiment
input parameters such as amplitude or frequency. This panel
has been presented via the graphical sharing desktop system
Virtual Networking Computer (VNC) until now since the
LabVIEW application is running remotely in the computer
wired to the experiment.

Synchronously, a 3D visualization of the simulation is
generated from the input and output values in the experiment
equipment. For instance, in the case of the Force on a Dipole
Experiment, shown in Figure 1, students are able to compare
the generated magnetic field lines with the real physical
experiment, which is streamed in real time through a video
camera. The network camera is provided by the iLab
ServiceBroker.

Due to the lack of support of swing components in the 0.4
Version of Wonderland, a button was developed to start the
virtual representation of the experiment and synchronize with
the real hardware.

Furthermore, a whiteboard was added to the environment to
use for post experiment discussion results. Textchat
functionality is also provided. These tools give students the
ability to interact with each other during the experiment and
discuss results of their work, as it is in a real face-to-face
collaboration.

B. TEALsim Architecture
TEALSim was designed according to the principles of the

classic design pattern Model-View-Controller [8]. Many
classes contribute to the functioning of each of these modules.
While the simulation engine represents the Model, the user
interface represents the Control. The viewer and renderer
constitute the View. A simulation consists of the combination
of these three modules with the collection of simulated objects
and user interface components specific to the simulation. All
simulation elements are JavaBeans and implement the
TElement interface. Interfaces provide the basic functionality
of the component, leaving the customization for its
implementation.

A typical basic Electromagnetic simulation will include a
simulation engine, a viewer, which by default is a Java3D
viewer, UI elements and other objects being simulated.
TSimulation interface describes the requirements for a
complete simulation and brings all these components together.

Like any other object in the world, a simulation must
implement the TElement interface, which describes the most
basic functionality for objects in the world. Graphical elements,
control objects and physical objects such as point charge
implement this interface. A TSimulation class is responsible
for the entire logic in a particular simulation. All the
components in the simulation are managed by instances of a
class that implements the TFramework interface. SimPlayer, is
an implementation of TFramework, that loads a TSimulation
object and presents it to the user either as a 3D desktop Java
application or applet.

The third basic component is the SimEngine, the simulation
engine. Basically, SimEngine performs three actions in a loop.

First, it computes variables for the current time step, then
updates simulation objects to reflect these new values.
Completing the loop SimEngine informs the renderer of any
visual changes to the simulation. This corresponds to the main
application thread for a TEALsim simulation.

The Viewer represents the rendering engine, displaying 3D
simulation elements on the screen. It also manages the user
interaction with the rendered images. The interface TViewer
defines rendering properties and tasks including camera
controls, visual effects and also maintains a list of rendered
elements. Each of the rendered elements is responsible for
updating the portion of the scenegraph that represents its
current position and state. These were considerations for the
major architecture components in TEALSim.

C. Incorporating jME in TEALSim
 Basically, three TEAL packages should be redesigned:
scene graph, render, and geometries.

As Java3D API, jME is also a scene-graph based rendering
engine. A scene graph organizes the data in a tree structure,
normally spatially. In the case of the jME, scene graph nodes
can be called either Nodes or Geometries, depending if we are
considering an internal node or a leaf node.

Node’s relevant information, like transforms have to be
considered during the integration, because Java3D uses
different utilities classes. Java3D fundamental types are
slightly different than jME ones. These are Matrix,Vector and
Quaternion.

Vector3f, Vector2f, Quaternions, Matrices are in jME float
because LWJGL only supports float. That is, our double
precision values handle the application side and are converted
to float at the scene graph level.

Besides other minor changes, we start to substitute Java3D
native geometries through jME fundamental shapes: box, cone,
cylinder, sphere, tourus.

A factory method is used to facilitate the rendering engine
migration. This method just instantiates an object. They are
useful here because we can leave the concrete implementation
of the conversion to the factory method. In the simulation we
didn't know whether to create Java3D or jME instances. Instead
we can use "render" and leave the instantiation of
implementation to a factory method.

D. MTGame
Although jME is a robust scene graph based rendering

engine, it does not provide everything necessary for rendering
3D real time simulation in Wonderland.

MT Game is a full performance Multi-Threaded Game
engine, which fulfills this need and also takes advantage of
new multicore client systems. In the API hierarchy, MT Game
sits on top of the jMonkey engine scene graph and the
Wonderland 3D client sits on the top of MT Game.

It extends the JME features by providing a fully parallel
processing model and its rendering system supports all major
rendering techniques. Besides that, it offers plugable systems

733

including picking and collision resolution and an input system
for processing not just mouse and keyboard events but also
other devices. In addition, we use MT Game collada model
loader to import our models into Wonderland.

MT Game is designed following a component model; this
enables us to dynamically add new features to new models with
almost no programmer intervention. All data will get into the
system through a component. In this model our base object is
called the Entity object, which is simply a container object for
components that are responsible for the object visual and
behavior. These components are created and managed by
Managers. The Worldmanager object provides the access to all
four Managers in the system: Render Manger, Input Manager,
CollisionManager, and Physics.

E. User Interfrace Considerations
As relevant as the graphic engine are the interface controls.

Several studies have shown that not well-planned navigation,
complex user action models and annoying conclusions
normally slow performance in the real world in the same
manner that a 3D interface does [9].

This is the reason why we redesign the environment to
integrate TEAL in Wonderland. Figure 3 shows the top view of
our new environment. We always keep in mind to give the user
in the virtual world fast situation awareness through effective
overview of the simulation and we are always engaged to
provide a meaningful feedback for user actions.

The controversy over 3D versus 2D interfaces is also
present in Virtual Worlds. In scientific visualization we
consider 3D as necessary to the number of tasks involving
continuous variables, surfaces and volumes. However for other
applications, a better strategy would be to explore variable
relationships in two coordinated diagrams to discover trends,
outliers or gaps.

Usability testing is more than essential for successful user
interface design. So, for the development of a new prototype,
which will integrate all the simulations from the TEAL project,
we considered findings of our latest evaluation of the proof-of-
concept [10]. In this study, we could compare how effective it
is to be immersed in a 3D environment for educational

purposes in traditional settings, specially related to
understanding physics concepts.

We start by grouping some high level objects together. 3D
Simulation visualization, the interface controls and the camera
were placed next to each other to provide the students an
effective overview of the situation. This organization allows
students a rapid visual search of any item. We have noticed that
by doing so, students could accomplish their tasks with a
reduced numbers of movements and clicks, thus reducing
navigation complexity. Figure 4 illustrates this organization.

By the time of the development we were not sure about the
implications of implementing either 2D HUD (Heads-up
Display) or 3D interfaces in Wonderland cells. On one hand, a
2D version could boost performance and remove clutter to the
plan view display. On the other hand, 3DUI can look similar to
real world objects leading to a highly immersive environment.
Our buttons can appear raised or depressed. Students normally
enjoy these interfaces, according to the students preferences
documented during the evaluation. In the cognitive domain we
believe that students would easily recognize and memorize
these objects because they improve spatial memory use [11].

Simulation elements in TEAL can communicate with any
other element in the world since all objects must implement
TElement interface. Its functionality includes support of Routes
and ProperyChangeEvents. In such a manner, simulation
objects can communicate with UI components. A property of a
simulation object can be manipulated if we connect a UI
element such as a slider. In our simulations, the Wonderland
swing provided API is wired to the TEAL simulation objects.

Project Wonderland HUD consists of 2D windows, which
appear above the 3D scene and they are not shared with other
in-world users [5]. They can be either visible or iconified. We
developed customs HUDComponents (HUDButtons) using the
Java(™) Swing GUI toolkit to control and change some
parameters of the simulation. To display the HUD component
the user should select the simulation check box menu item.
Since the Wonderland client core itself uses Swing to
implement HUD, both are local GUI only and not shared
among the users.

Parallel to this implementation, we use the Wonderland
API to create 3D objects and make them react to user input
events. This interface can be manipulated by multiple
Wonderland users, instead of HUD, which can only be
presented to one user. For the Force on a Dipole we developed
a set of buttons to control the amplitude and frequency
parameters and to turn on and off the simulation and the coil on
the top corner. The great advantage of having 3D interfaces is
that these buttons are shared among the other Wonderland
clients. By organizing all the buttons next to the experiment,
we avoid the unnecessary visual clutter caused by the larger
VNC panel.

To define how big the 3D buttons are and how they look,
we use the jME API. For the dynamic behavior of the 3D
objects, such as the button animations we use MT Game
processor objects. In order to display 3D interfaces we create a
RenderComponent. Otherwise nothing could be displayed.
Buttons can only react to user input when they are “pickable”.

Figure 3. The redesigned Collaborative Virtual Learning
Environment in Wonderland integrated with TEAL Simulations

734

To make them pickable we need to attach to their nodes a
collision component. Every time users press the button, the
simulation opens a data socket to the lab view application. The
TEALsim simulation engine receives the data through the
socket channel and sends it back to update simulation objects
to reflect these new values. As we mentioned earlier also part
of the simulation engine rule is to inform the viewers rendering
engine if there is any visual change necessary to be made.
Having this 3D interface near the visualization minimizes the
number of navigation steps for students to accomplish their

tasks in this environment. This also makes the environment
more game-like, being dynamic and enjoyable for students and
educators.

F. TEALSim & Wonderland Integration
The integration of TEALsim with Wonderland will not

significantly change the process of creating simulations, but
will provide Wonderland modules and cells that implement the
TEAL framework. These modules will provide simulation
engines that run within the Wonderland environment, render
engines that execute in the Wonderland client, and manage the
communication between the server and clients. In Wonderland
a module is similar to a plug-in, just by including the TEALsim
module and specifying the top level Java simulation class, it
will be in your world.

As we mentioned, the TEALSim rendering engine is
implemented as a Java3D based Viewer, which also handles
the explicit rendering of the scene. Since Project Wonderland
in its version 0.5 uses jME as its main rendering engine, we
considered also a redesign of the TealSim 3D viewer. For
many reasons, the viewer is tightly coupled to the SimEngine.
Every time a simulation object has changed, the simulation
engine has to inform the Viewer. Additionally, each of these
elements has an associate visual representation, now as jME
geometry. In the other way, when the user manipulates a visual
object in the viewer, this should report back to the simulation.

IV. CURRENT STATUS AND FUTURE WORK
We plan to finish the TEALSim integration into

Wonderland at the end of the Summer 2010. A stable version
of this module should be running by April 2010. Depending on
time and the level of integration of the game engine at this

time, we will start to experiment with the NPC avatars or semi-
autonomous tutors, making them intelligently react according
to data stream.

Additionally, we are involved in the development of 3D
interactive games, where students should be able to understand
how magnetic forces and fields behave in nature.

V. CONCLUSION
This research investigates the learning benefit for students

and educators by using avatars in virtual worlds for
collaboration and educational undertakings. We strongly
believe that CLVE plays an important role converging
collaborative technologies and tools such as video, graphics
and real time simulations.

Such a game like design, keeps students interest even
though they are physically remote. Combined with peer
cooperation, the real time visualization helps students fully
understand the dynamics of electromagnetism [2]. More and
more, students and educators are agreeing on the additional
value of CLVE as an educational tool, fulfilling students and
educators needs for an environment for remote communication
and collaboration. Once the students see the same behavior at
the same time, it is easier to cooperate on misunderstood
concepts. Other than 2D applications, here users could explore
our 3D space analyzing TEAL simulations from different
locations in the room.

Moreover, the combination of a collaborative learning
environment with internet-accessible iLabs is a less expensive
solution for educators, because both are based in open source
technology and sharing of resources. Some of the experiments
and simulations could be very costly in traditional settings.
Both are easy to use and are intuitive.

We are also planning to evaluate the different user
interfaces approach considering student’s cognitive process,
relevant features and entertainment. Through such a study we
can polish our design and generate new guidelines.

These are the first steps integrating TEAL Simulations in
our collaborative virtual learning environment. We will
continue to research ways CLVE can increase even more its
pedagogical value fostering the learning process. Scientific
collaboration may happen in the future primarily in Virtual
Environments.

ACKNOWLEDGMENT
We thank the Center for Educational Computing Initiatives

(CECI) at MIT for hosting and supporting this research. We
also thank the faculty, staff and students involved in the TEAL
Project and the team of developers from Sun Microsystems.
Special thanks to Mark Bessette for Figures 3 and 4 and Tina
Scheucher. This research has been partially supported by the
Austrian Marshall Plan Foundation.

Figure 4. The redesigned Force on a Dipole Experiment in
Wonderland

735

REFERENCES

[1] K. Jaa-aro, “Reconsidering the avatar: From user mirror to interacrtion
locus” Ph.D. dissertation, KTH Numerical Analysis and Computer
Science, Stockholm, Sweden 2004.

[2] B. Scheucher, P. Bailey, C. Guetl, V. Harward, “ Collaborative virtual
3D environment for internet-accessible physics experiments” The
International Journal on Emerging Technologies in Learning, 2009.

[3] Y.D. Dori, J Belcher, “How does technology-enabled active learning
affect undergraduate student’s understanding of electromagnetism
concepts?” The Journal of the Learning Sciences, 14(2), pp. 243-279.,
2005.

[4] V. Judson Harward et al, “iLab: A scalable architecture for sharing
online experiments” International Conference on Engineering Education,
Gainesville, Florida, 2004.

[5] Project Wonderland (2009)[Online]. Available: https://lg3d-
wonderland.dev.java.net

[6] D.Twilleager (2008), “MTGame Programming Guide” Sun
Microsystem. Available:https://lg3d-wonderland.dev.java.net

[7] jMonkeyEngine (2009) “jMonkeyEngine User Guide” Available:
http://www.jmonkeyengine.com/

[8] J.Belcher, A. Mckinney, P. Bailey, M. Danzinger “TEALSim: A Guide
to the Java 3D Software.” Massachusetts Institute of Technology,
Cambridge, MA, Dec. 2007.

[9] B. Schneiderman “Why not make interfaces better than 3D Reality?”
IEEE Comput. Graph. Appl. Nov/Dec 2003.

[10] B. Scheucher, J. Belcher, P. Bailey, F. Dos Santos, C. Guetl “Evaluation
results of a 3D virtual environment for internet-accessible physics
experiments” Interactive Computer Aided Learning Conference, Villach,
Austria, 2009.

[11] W. Ark et al., “Representation Matters: The effect of 3D objects and a
spatial metaphor in a graphical user interface” Proc. Human -Computer
Interaction Conf. People and Computers XIII, Springer Verlag, 1998,
pp. 209-219.

736

